數(shù)學(xué)公式,則P、Q、R的大小關(guān)系是________.

Q≤P≤R
分析:根據(jù)對數(shù)的運(yùn)算性質(zhì),得lga>0且lgb>0.再由基本不等式,得出P≥Q且P≤R,由此即可得到P、Q、R的大小關(guān)系.
解答:∵a>1,b>1,∴l(xiāng)ga>0且lgb>0
∴Q=(lga+lgb)=P
又∵
∴P=(lga+lgb)=lg≤lg()=R
綜上所述,得P、Q、R的大小關(guān)系是Q≤P≤R
故答案為:Q≤P≤R
點(diǎn)評:本題給出關(guān)于關(guān)于a、b的一個含有對數(shù)的式子,比較三個式子的大小,著重考查了對數(shù)的運(yùn)算性質(zhì)和基本不等式求最值等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題的個數(shù)為(  )
(1)在△ABC中,若A>B,則sinA>sinB;
(2)已知
AB
=(3,4),
CD
=(-2,-1)
,則
AB
CD
上的投影為-2;
(3)已知p:?x∈R,cosx=1,q:?x∈R,x2-x+1>0,則“p∧¬q”為假命題;
(4)已知函數(shù)f(x)=sin(ωx+
π
6
)-2
(ω>0)的導(dǎo)函數(shù)的最大值為3,則函數(shù)f(x)的圖象關(guān)于x=
π
3
對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題的個數(shù)為(  )
(1)在△ABC中,若A>B,則sinA>sinB;
(2)已知
AB
=(3,4),
CD
=(-2,-1)
,則
AB
CD
上的投影為-2;
(3)已知p:?x∈R,cosx=1,q:?x∈R,x2-x+1>0,則“p∧¬q”為假命題;
(4)函數(shù)f(x)=xsinx在(0,π)上有最大值,沒有最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①若|x-lgx|<x+|lgx|成立,則x>1;
②已知|
a
| =|
b
| =2
,
a
b
的夾角為
π
3
,則
b
a
上的投影為1;
③若P=a+
1
a
+2(a>0),q=(
1
2
)
x2-2
(x∈R)
,則p>q;
④已知f(x)=asinx-bcosx在x=
π
6
處取得最大值2,則a=1,b=
3
;
其中正確命題的序號是
①②
①②
.(把你認(rèn)為正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省哈爾濱三中高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

下列命題中,真命題的個數(shù)為( )
(1)在△ABC中,若A>B,則sinA>sinB;
(2)已知,則上的投影為-2;
(3)已知p:?x∈R,cosx=1,q:?x∈R,x2-x+1>0,則“p∧¬q”為假命題;
(4)已知函數(shù)(ω>0)的導(dǎo)函數(shù)的最大值為3,則函數(shù)f(x)的圖象關(guān)于對稱.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省綏化九中高三(上)第三次月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

下列命題中,真命題的個數(shù)為( )
(1)在△ABC中,若A>B,則sinA>sinB;
(2)已知,則上的投影為-2;
(3)已知p:?x∈R,cosx=1,q:?x∈R,x2-x+1>0,則“p∧¬q”為假命題;
(4)函數(shù)f(x)=xsinx在(0,π)上有最大值,沒有最小值.
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案