【題目】如圖1,在直角梯形ABCD中,AB∥DC,∠BAD=90°,AB=AD= CD=1,如圖2,將△ABD沿BD折起來,使平面ABD⊥平面BCD,設E為AD的中點,F(xiàn)為AC上一點,O為BD的中點.
(Ⅰ)求證:AO⊥平面BCD;、
(Ⅱ)若三棱錐A﹣BEF的體積為 ,求二面角A﹣BE﹣F的余弦值的絕對值.
【答案】證明:在圖1中,取CD的中點E,連結(jié)BE, ∵AB∥DC,∠BAD=90°,AB=AD= CD=1,
∴BE=DE=CE=1,BE⊥CD,
∴∠DBE=∠CBE=45°,
∴BC⊥BD,
又平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC平面BCD,
∴BC⊥平面ABD,∵AO平面ABD,
∴AO⊥BC,
∵AB=AD,O是BD的中點,
∴AO⊥BD,又BD∩BC=B,BD平面BCD,BC平面BCD,
∴AO⊥平面BCD.
(II)解:設F到平面ABD的距離為h,
則VA﹣BEF=VF﹣ABE= = = ,∴h= .
∴CF= CA.
由(I)可知OE⊥BD,以O為原點,以OD,OE,OA為坐標軸建立空間直角坐標系O﹣xyz,
則A(0,0, ),B(﹣ ,0,0),E( ,0, ),C(﹣ , ,0),
∴ =( ,0, ), =(0, ,0), =( ,﹣ , ),
∴ = = =( , , ),
設平面BEF的法向量為 =(x,y,z),則 ,
∴ ,令x=1得 =(1, ,﹣3),
∵BC⊥平面ABD,∴ =(0, ,0)是平面ABD的一個法向量,
∴cos< >= = = .
∴二面角A﹣BE﹣F的余弦值的絕對值為 .
【解析】(I)由面面垂直可得BC⊥平面ABD,故而BC⊥AO,結(jié)合AO⊥BD即可得出AO⊥平面BCD;(II)根據(jù)棱錐的體積得出F的位置,建立空間坐標系,求出兩平面的法向量,則兩法向量的夾角的余弦的絕對值即為所求.
【考點精析】關于本題考查的直線與平面垂直的判定,需要了解一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學思想才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x+ex﹣a , g(x)=ln(x+2)﹣4ea﹣x , 其中e為自然對數(shù)的底數(shù),若存在實數(shù)x0 , 使f(x0)﹣g(x0)=3成立,則實數(shù)a的值為( )
A.﹣ln2﹣1
B.﹣1+ln2
C.﹣ln2
D.ln2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|
(1)若函數(shù)f(x)的值域為[2,+∞),求實數(shù)a的值
(2)若f(2﹣a)≥f(2),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F(xiàn)分別為BC,AD的中點,點M在線段PD上.
(Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=2cos (sin ﹣ cos )+ (ω>0)在區(qū)間( ,π)上有且僅有一個零點,則實數(shù)ω的范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知實數(shù)a,b,c滿足a,b,c∈R+ .
(Ⅰ)若ab=1,證明:( + )2≥4;
(Ⅱ)若a+b+c=3,且 + + ≤|2x﹣1|﹣|x﹣2|+3恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在三棱錐A﹣BCD中,側(cè)面ABD,ACD是全等的直角三角形,AD是公共的斜邊且AD= ,BD=CD=1,另一側(cè)面ABC是正三角形.
(1)求證:AD⊥BC;
(2)若在線段AC上存在一點E,使ED與平面BCD成30°角,試求二面角A﹣BD﹣E的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(已知函數(shù)f(x)=|2x+1|+|x﹣2|,不等式f(x)≤2的解集為M.
(1)求M;
(2)記集合M的最大元素為m,若正數(shù)a,b,c滿足abc=m, 求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知D= ,給出下列四個命題:
P1:(x,y)∈D,x+y+1≥0;
P2:(x,y)∈D,2x﹣y+2≤0;
P3:(x,y)∈D, ≤﹣4;
P4:(x,y)∈D,x2+y2≤2.
其中真命題的是( )
A.P1 , P2
B.P2 , P3
C.P2 , P4
D.P3 , P4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com