【題目】如圖是九江市20194月至20203月每月最低氣溫與最高氣溫(℃)的折線統(tǒng)計(jì)圖:已知每月最低氣溫與最高氣溫的線性相關(guān)系數(shù)r0.83,則下列結(jié)論錯(cuò)誤的是(

A.每月最低氣溫與最高氣溫有較強(qiáng)的線性相關(guān)性,且二者為線性正相關(guān)

B.月溫差(月最高氣溫﹣月最低氣溫)的最大值出現(xiàn)在10

C.912月的月溫差相對(duì)于58月,波動(dòng)性更大

D.每月最高氣溫與最低氣溫的平均值在前6個(gè)月逐月增加

【答案】D

【解析】

根據(jù)相關(guān)系數(shù)的性質(zhì)判斷A;根據(jù)所給折線圖,對(duì)B,C,D逐項(xiàng)進(jìn)行判斷.

每月最低氣溫與最高氣溫的線性相關(guān)系數(shù)r0.83,比較接近于,則每月最低氣溫與最高氣溫有較強(qiáng)的線性相關(guān)性,且二者為線性正相關(guān),則A正確;

由所給的折線圖可以看出月溫差(月最高氣溫﹣月最低氣溫)的最大值出現(xiàn)在10月,則B正確;

58月的月溫差分別為18,17,16,16912月的月溫差分別為20,31,24,21,則912月的月溫差相對(duì)于58月,波動(dòng)性更大,C正確;

每月的最高氣溫與最低氣溫的平均值在前5個(gè)月逐月增加,第六個(gè)月開(kāi)始減少,所以A正確,則D錯(cuò)誤;

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知是曲線為參數(shù))上的動(dòng)點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到,設(shè)點(diǎn)的軌跡為曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)在極坐標(biāo)系中,直線與曲線分別相交于異于極點(diǎn)兩點(diǎn),點(diǎn),當(dāng)時(shí),求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)作圓的切線,已知分別為切點(diǎn),直線恰好經(jīng)過(guò)橢圓的右焦點(diǎn)和下頂點(diǎn),則直線方程為___________;橢圓的標(biāo)準(zhǔn)方程是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓.

1)曲線相交于,兩點(diǎn),上異于的點(diǎn),若直線的斜率為1,求直線的斜率;

2)若的左焦點(diǎn)為,右頂點(diǎn)為,直線.過(guò)的直線相交于,在第一象限)兩點(diǎn),與相交于,是否存在使的面積等于的面積與的面積之和.若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CM,CN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現(xiàn)擬在兩條木棧道的AB處設(shè)置觀景臺(tái),記BC=a,AC=b,AB=c(單位:百米)

1)若a,bc成等差數(shù)列,且公差為4,求b的值;

2)已知AB=12,記∠ABC,試用θ表示觀景路線A-C-B的長(zhǎng),并求觀景路線A-C-B長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,三內(nèi)角A,BC滿(mǎn)足

(Ⅰ)判斷△ABC的形狀;

(Ⅱ)若點(diǎn)D在線段AC上,且CD2DA,求tanA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】年上半年,隨著新冠肺炎疫情在全球蔓延,全球超過(guò)個(gè)國(guó)家或地區(qū)宣布進(jìn)人緊急狀態(tài),部分國(guó)家或地區(qū)直接宣布封國(guó)封城,隨著國(guó)外部分活動(dòng)進(jìn)入停擺,全球經(jīng)濟(jì)缺乏活力,一些企業(yè)開(kāi)始倒閉,下表為年第一季度企業(yè)成立年限與倒閉分布情況統(tǒng)計(jì)表:

企業(yè)成立年份

2019

2018

2017

2016

2015

企業(yè)成立年限

1

2

3

4

5

倒閉企業(yè)數(shù)量(萬(wàn)家)

5.23

4.70

3.72

3.12

2.42

倒閉企業(yè)所占比例

21.8%

19.6%

15.5%

13.0%

10.1%

根據(jù)上表,給出兩種回歸模型:

模型①:建立曲線型回歸模型,求得回歸方程為

模型②:建立線性回歸模型.

1)根據(jù)所給的統(tǒng)計(jì)量,求模型②中關(guān)于的回歸方程;

2)根據(jù)下列表格中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測(cè)年成立的企業(yè)中倒閉企業(yè)所占比例(結(jié)果保留整數(shù)).

回歸模型

模型①

模型②

回歸方程

參考公式:,;.

參考數(shù)據(jù):,,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正三棱柱ABCA1B1C1的底面邊長(zhǎng)為,且該三棱柱外接球的表面積為14π,若P為底面A1B1C1的中心,則PA與平面ABC所成角的大小為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案