分析 (1)由條件求得tanα的值,再根據(jù)3sin2α-cos2α=$\frac{{3tan}^{2}α-1}{{tan}^{2}α+1}$,計算求的結(jié)果.
(2)由sin(3π+θ)=-sinθ=$\frac{1}{4}$,求得sinθ=-$\frac{1}{4}$,再利用誘導(dǎo)公式化簡要求的式子,可得結(jié)果.
解答 解:(1)∵已知tanα-$\frac{1}{tanα}$=$\frac{8}{3}$,∴tanα=3,或tanα=-$\frac{1}{3}$.
∴3sin2α-cos2α=$\frac{{3sin}^{2}α{-cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{3tan}^{2}α-1}{{tan}^{2}α+1}$,
當(dāng)tanα=3 時,3sin2α-cos2α=$\frac{{3tan}^{2}α-1}{{tan}^{2}α+1}$=$\frac{27-1}{9+1}$=2.6,
當(dāng)tanα=-$\frac{1}{3}$ 時,3sin2α-cos2α=$\frac{{3tan}^{2}α-1}{{tan}^{2}α+1}$=$\frac{\frac{3}{9}-1}{\frac{1}{9}+1}$=-0.6.
(2)∵已知sin(3π+θ)=-sinθ=$\frac{1}{4}$,∴sinθ=-$\frac{1}{4}$,
∴$\frac{cos(π+θ)}{cosθ[cos(π+θ)-1]}$+$\frac{sin(\frac{π}{2}-θ)}{cos(θ+2π)cos(π+θ)+cos(-θ)}$=$\frac{-cosθ}{cosθ•(-cosθ-1)}$+$\frac{cosθ}{cosθ•(-cosθ)+cosθ}$=$\frac{1}{cosθ+1}$+$\frac{1}{1-cosθ}$
=$\frac{1-cosθ}{(1+cosθ)•(1-sinθ)}$+$\frac{1+cosθ}{(1+cosθ)•(1-cosθ)}$=$\frac{2}{{sin}^{2}θ}$=32.
點評 本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com