已知函數(shù)f(x)=m(x-1)2-2x+3+ln x,m≥1.
(1)當(dāng)m=時(shí),求函數(shù)f(x)在區(qū)間[1,3]上的極小值;
(2)求證:函數(shù)f(x)存在單調(diào)遞減區(qū)間[a,b];
(3)是否存在實(shí)數(shù)m,使曲線C:y=f(x)在點(diǎn)P(1,1)處的切線l與曲線C有且只有一個(gè)公共點(diǎn)?若存在,求出實(shí)數(shù)m的值;若不存在,請(qǐng)說(shuō)明理由.
(1) 極小值為f(2)=ln 2- (2)見(jiàn)解析 (3) 存在實(shí)數(shù)m=1使得曲線C:y=f(x)在點(diǎn)P(1,1)處的切線l與曲線C有且只有一個(gè)公共點(diǎn)
【解析】(1)f′(x)=m(x-1)-2+ (x>0).
當(dāng)m=時(shí),f′(x)=,令f′(x)=0,得x1=2,x2=.
f (x),f′(x)在x∈(0,+∞)上的變化情況如下表:
x | 2 | (2,+∞) | |||
f′(x) | + | 0 | - | 0 | + |
f(x) | 單調(diào)遞增 | 極大值 | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 |
所以當(dāng)x=2時(shí),函數(shù)f(x)在x∈[1,3]上取到極小值,且極小值為f(2)=ln 2-.
(2)證明:令f′(x)=0,得mx2-(m+2)x+1=0.(*)
因?yàn)?/span>Δ= (m+2)2-4m=m2+4>0,所以方程(*)存在兩個(gè)不等實(shí)根,記為a,b(a<b).
因?yàn)?/span>m≥1,所以,
所以a>0,b>0,即方程(*)有兩個(gè)不等的正根,因此f′(x)<0的解為(a,b).
故函數(shù)f(x)存在單調(diào)遞減區(qū)間[a,b].
(3)因?yàn)?/span>f′(1)=-1,所以曲線C:y=f(x)在點(diǎn)P(1,1)處的切線l的方程為y=-x+2.若切線l與曲線C有且只有一個(gè)公共點(diǎn),則方程m(x-1)2-2x+3+ln x=-x+2有且只有一個(gè)實(shí)根.
顯然x=1是該方程的一個(gè)根.
令g(x)=m(x-1)2-x+1+ln x,則g′(x)=m(x-1)-1+=.
當(dāng)m=1時(shí),有g′(x)≥0恒成立,所以g(x)在(0,+∞)上單調(diào)遞增,所以x=1是方程的唯一解,m=1符合題意.
當(dāng)m>1時(shí),由g′(x)=0,得x1=1,x2=,則x2∈(0,1),易得g (x)在x1處取到極小值,在x2處取到極大值.
所以g(x2)>g(x1)=0,又當(dāng)x趨近0時(shí),g(x)趨近-∞,所以函數(shù)g(x)在內(nèi)也有一個(gè)解,m>1不符合題意.
綜上,存在實(shí)數(shù)m=1使得曲線C:y=f(x)在點(diǎn)P(1,1)處的切線l與曲線C有且只有一個(gè)公共點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題3第3課時(shí)練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-1;數(shù)列{bn}滿足bn-1-bn=bnbn-1(n≥2,n∈N*),b1=1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題2第3課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知平面向量a=(x1,y1),b=(x2,y2),若|a|=2,|b|=3,a·b=-6,則的值為( )
A. B.- C. D.-
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題2第1課時(shí)練習(xí)卷(解析版) 題型:解答題
已知a=(5cos x,cos x),b=(sin x,2cos x),設(shè)函數(shù)f(x)=a·b+|b|2+.
(1)當(dāng)∈時(shí),求函數(shù)f(x)的值域;
(2)當(dāng)x∈時(shí),若f(x)=8,求函數(shù)f的值;
(3)將函數(shù)y=f(x)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的縱坐標(biāo)向下平移5個(gè)單位,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的表達(dá)式并判斷奇偶性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題2第1課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)y=Asin(ωx+φ)+k(A>0,ω>0)的最大值為4,最小值為0,最小正周期為,直線x=是其圖象的一條對(duì)稱軸,則下面各式中符合條件的解析式為 ( )
A.y=4sin B.y=2sin+2
C.y=2sin+2 D.y=2sin+2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題1第5課時(shí)練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=+ln x.
(1)當(dāng)a=時(shí),求f(x)在[1,e]上的最大值和最小值;
(2)若函數(shù)g(x)=f(x)-x在[1,e]上為增函數(shù),求正實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題1第5課時(shí)練習(xí)卷(解析版) 題型:選擇題
函數(shù)f(x)的定義域是R,f(0)=2,對(duì)任意x∈R,f(x)+f′(x)>1,則不等式ex·f(x)>ex+1的解集為( )
A.{x|x>0} B.{x|x<0}
C.{x|x<-1或x>1} D.{x|x<-1或0<x<1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題1第3課時(shí)練習(xí)卷(解析版) 題型:解答題
有一種新型的洗衣液,去污速度特別快.已知每投放k(1≤k≤4,且k∈R)個(gè)單位的洗衣液在一定量水的洗衣機(jī)中,它在水中釋放的濃度y(克/升)隨著時(shí)間x(分鐘)變化的函數(shù)關(guān)系式近似為y=k·f(x),其中f(x)=若多次投放,則某一時(shí)刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時(shí)刻所釋放的濃度之和.根據(jù)經(jīng)驗(yàn),當(dāng)水中洗衣液的濃度不低于4(克/升)時(shí),它才能起到有效去污的作用.
(1)若只投放一次k個(gè)單位的洗衣液,兩分鐘時(shí)水中洗衣液的濃度為3(克/升),求k的值;
(2)若只投放一次4個(gè)單位的洗衣液,則有效去污時(shí)間可達(dá)幾分鐘?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊(cè)新課標(biāo)·通用版專題四練習(xí)卷(解析版) 題型:解答題
數(shù)列{an}的前n項(xiàng)和為Sn=2an-2,數(shù)列{bn}是首項(xiàng)為a1,公差不為零的等差數(shù)列,且b1,b3,b11成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求證: <5.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com