已知平面向量a=(x1,y1),b=(x2,y2),若|a|=2,|b|=3,a·b=-6,則的值為( )
A. B.- C. D.-
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題4第3課時練習卷(解析版) 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,側棱AA1⊥底面ABC,AB⊥BC,D為AC的中點,AA1=AB=2,BC=3.
(1)求證:AB1∥平面BC1D;
(2)求四棱錐B-AA1C1D的體積.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題3第2課時練習卷(解析版) 題型:選擇題
已知等比數(shù)列{an}中,a4+a8=-2,則a6(a2+2a6+a10)的值為( )
A.4 B.6 C.8 D.-9
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題2第3課時練習卷(解析版) 題型:填空題
在△ABC中,∠B=,O為△ABC的外心,P為劣弧AC上一動點,且=x +y (x,y∈R),則x+y的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題2第3課時練習卷(解析版) 題型:選擇題
設e1,e2,e3,e4是某平面內(nèi)的四個單位向量,其中e1⊥e2,e3與e4的夾角為45°,對這個平面內(nèi)的任意一個向量a=xe1+ye2,規(guī)定經(jīng)過一次“斜二測變換”得到向量a1=xe3+e4.設向量t1=-3e3-2e4是經(jīng)過一次“斜二測變換”得到的向量,則|t|是( )
A.5 B. C.73 D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題2第2課時練習卷(解析版) 題型:解答題
設函數(shù)f(x)=+2cos2x.
(1)求f(x)的最大值,并寫出使f(x)取最大值時x的集合;
(2)已知△ABC中,角A,B,C的對邊分別為a,b,c,若f(B+C)=,b+c=2,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題2第2課時練習卷(解析版) 題型:選擇題
已知cos α=,cos(α+β)=-,且α,β∈,則cos(α-β)的值等于( )
A.- B. C.- D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題1第6課時練習卷(解析版) 題型:解答題
已知函數(shù)f(x)=m(x-1)2-2x+3+ln x,m≥1.
(1)當m=時,求函數(shù)f(x)在區(qū)間[1,3]上的極小值;
(2)求證:函數(shù)f(x)存在單調遞減區(qū)間[a,b];
(3)是否存在實數(shù)m,使曲線C:y=f(x)在點P(1,1)處的切線l與曲線C有且只有一個公共點?若存在,求出實數(shù)m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題1第2課時練習卷(解析版) 題型:解答題
已知函數(shù)f(x)=x2+(x≠0,a∈R).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若f(x)在區(qū)間[2,+∞)上是增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com