已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn2an1;數(shù)列{bn}滿足bn1bnbnbn1(n≥2,nN*),b11.

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)求數(shù)列的前n項(xiàng)和Tn.

 

1an2n1,bn2(n1)·2n1.

【解析】(1)Sn2an1,得S12a11,a11.

Sn2an1Sn12an11(n≥2),

兩式相減,得SnSn12an2an1,an2an2an1.

an2an1,n≥2.數(shù)列{an}是首項(xiàng)為1,公比為2的等比數(shù)列.

an1·2n12n1.

bn1bnbnbn1(n≥2nN*),得1.

b11,數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列.

1(n1)·1n.bn.

(2)(1)可知n·2n1

Tn1·202·21n·2n1,2Tn1·212·22n·2n.

兩式相減,Tn1212n1n·2nn·2n=-12nn·2n.

Tn(n1)·2n1

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題6第2課時(shí)練習(xí)卷(解析版) 題型:選擇題

有一底面半徑為1,高為2的圓柱,點(diǎn)O為這個(gè)圓柱底面圓的圓心,在這個(gè)圓柱內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P到點(diǎn)O的距離大于1的概率為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題4第3課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,在三棱柱ABCA1B1C1中,側(cè)棱AA1底面ABCABBC,DAC的中點(diǎn),AA1AB2,BC3.

(1)求證:AB1平面BC1D;

(2)求四棱錐BAA1C1D的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題4第1課時(shí)練習(xí)卷(解析版) 題型:填空題

已知三棱柱ABCA1B1C1,底面是邊長(zhǎng)為的正三角形,側(cè)棱垂直于底面,且該三棱柱的外接球的體積為,則該三棱柱的體積為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題4第1課時(shí)練習(xí)卷(解析版) 題型:選擇題

已知水平放置的ABC的直觀圖ABC′(斜二測(cè)畫法)是邊長(zhǎng)為a的正三角形,則原ABC的面積為(  )

A.a2 B.a2 C.a2 D.a2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題3第2課時(shí)練習(xí)卷(解析版) 題型:填空題

已知數(shù)列{an}中,a11,an1(1)n(an1),記Sn{an}n項(xiàng)的和,則S2 013________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題3第2課時(shí)練習(xí)卷(解析版) 題型:選擇題

已知等比數(shù)列{an}中,a4a8=-2,則a6(a22a6a10)的值為( )

A4 B6 C8 D.-9

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題2第3課時(shí)練習(xí)卷(解析版) 題型:填空題

ABC中,B,OABC的外心,P為劣弧AC上一動(dòng)點(diǎn),且x y (x,yR),則xy的取值范圍為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題1第6課時(shí)練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)m(x1)22x3ln x,m≥1.

(1)當(dāng)m時(shí),求函數(shù)f(x)在區(qū)間[1,3]上的極小值;

(2)求證:函數(shù)f(x)存在單調(diào)遞減區(qū)間[a,b];

(3)是否存在實(shí)數(shù)m,使曲線Cyf(x)在點(diǎn)P(1,1)處的切線l與曲線C有且只有一個(gè)公共點(diǎn)?若存在,求出實(shí)數(shù)m的值;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案