分析 (1)利用極坐標(biāo)與直角坐標(biāo)的互化方法,求圓C的直角坐標(biāo)方程;
(2)利用參數(shù)的幾何意義,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的最小值.
解答 解:(1)圓C的方程為ρ=6sinθ,可化為直角坐標(biāo)方程為x2+y2=6y,即x2+(y-3)2=9;
(2)直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosα\\ y=2+tsinα\end{array}\right.(t$為參數(shù)),代入x2+(y-3)2=9,可得t2+2(cosα-sinα)t-7=0,
∴t1+t2=-2(cosα-sinα),t1t2=-7,
∴$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{1}{7}\sqrt{4(cosα-sinα)^{2}+28}$=$\frac{1}{7}\sqrt{32-4sin2α}$≥$\frac{2\sqrt{7}}{7}$,
∴$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的最小值為$\frac{2\sqrt{7}}{7}$.
點(diǎn)評(píng) 本題考查極坐標(biāo)與直角坐標(biāo)的互化,考查參數(shù)方程的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 16+16$\sqrt{2}$ | C. | 48 | D. | 16+32$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com