【題目】已知a為常數(shù),函數(shù)f(x)=x(lnx﹣ax)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2)( )
A.
B.
C.
D.
【答案】D
【解析】解:∵f′(x)=lnx+1﹣2ax,(x>0)
令f′(x)=0,由題意可得lnx=2ax﹣1有兩個(gè)解x1 , x2函數(shù)g(x)=lnx+1﹣2ax有且只有兩個(gè)零點(diǎn)g′(x)在(0,+∞)上的唯一的極值不等于0.
.
①當(dāng)a≤0時(shí),g′(x)>0,f′(x)單調(diào)遞增,因此g(x)=f′(x)至多有一個(gè)零點(diǎn),不符合題意,應(yīng)舍去.
②當(dāng)a>0時(shí),令g′(x)=0,解得x= ,
∵x ,g′(x)>0,函數(shù)g(x)單調(diào)遞增; 時(shí),g′(x)<0,函數(shù)g(x)單調(diào)遞減.
∴x= 是函數(shù)g(x)的極大值點(diǎn),則 >0,即 >0,
∴l(xiāng)n(2a)<0,∴0<2a<1,即 .
故當(dāng)0<a< 時(shí),g(x)=0有兩個(gè)根x1 , x2 , 且x1< <x2 , 又g(1)=1﹣2a>0,
∴x1<1< <x2 , 從而可知函數(shù)f(x)在區(qū)間(0,x1)上遞減,在區(qū)間(x1 , x2)上遞增,在區(qū)間(x2 , +∞)上遞減.
∴f(x1)<f(1)=﹣a<0,f(x2)>f(1)=﹣a>﹣ .
故選:D.
【考點(diǎn)精析】本題主要考查了函數(shù)的極值和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握極值反映的是函數(shù)在某一點(diǎn)附近的大小情況;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于數(shù)列, , , ,若滿足,則稱數(shù)列為“數(shù)列”.
若存在一個(gè)正整數(shù),若數(shù)列中存在連續(xù)的項(xiàng)和該數(shù)列中另一個(gè)連續(xù)的項(xiàng)恰好按次序?qū)?yīng)相等,則稱數(shù)列是“階可重復(fù)數(shù)列”,
例如數(shù)列因?yàn)?/span>, , , 與, , , 按次序?qū)?yīng)相等,所以數(shù)列是“階可重復(fù)數(shù)列”.
(I)分別判斷下列數(shù)列, , , , , , , , , .是否是“階可重復(fù)數(shù)列”?如果是,請(qǐng)寫出重復(fù)的這項(xiàng);
(II)若項(xiàng)數(shù)為的數(shù)列一定是 “階可重復(fù)數(shù)列”,則的最小值是多少?說明理由;
(III)假設(shè)數(shù)列不是“階可重復(fù)數(shù)列”,若在其最后一項(xiàng)后再添加一項(xiàng)或,均可 使新數(shù)列是“階可重復(fù)數(shù)列”,且,求數(shù)列的最后一項(xiàng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x(x+a)﹣lnx,其中a為常數(shù).
(1)當(dāng)a=﹣1時(shí),求f(x)的極值;
(2)若f(x)是區(qū)間 內(nèi)的單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查喜愛運(yùn)動(dòng)是否和性別有關(guān),我們隨機(jī)抽取了50名對(duì)象進(jìn)行了問卷調(diào)查得到了如下的2×2列聯(lián)表:
喜愛運(yùn)動(dòng) | 不喜愛運(yùn)動(dòng) | 合計(jì) | |
男性 | 5 | ||
女性 | 10 | ||
合計(jì) | 50 |
若在全部50人中隨機(jī)抽取2人,抽到喜愛運(yùn)動(dòng)和不喜愛運(yùn)動(dòng)的男性各一人的概率為 .
附:
P(K2≥k) | 0.05 | 0.01 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2=
(1)請(qǐng)將上面的2×2列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為喜愛運(yùn)動(dòng)與性別有關(guān)?說明你的理由..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知面積為S的凸四邊形中,四條邊長(zhǎng)分別記為a1 , a2 , a3 , a4 , 點(diǎn)P為四邊形內(nèi)任意一點(diǎn),且點(diǎn)P到四邊的距離分別記為h1 , h2 , h3 , h4 , 若 = = = =k,則h1+2h2+3h3+4h4= 類比以上性質(zhì),體積為y的三棱錐的每個(gè)面的面積分別記為Sl , S2 , S3 , S4 , 此三棱錐內(nèi)任一點(diǎn)Q到每個(gè)面的距離分別為H1 , H2 , H3 , H4 , 若 = = = =K,則H1+2H2+3H3+4H4=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求證:1是函數(shù)的極值點(diǎn);
(Ⅱ)設(shè)是函數(shù)的導(dǎo)函數(shù),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈[1,2],x2﹣a≥0,命題q:x0∈R,x02+2ax0+2﹣a=0;若命題¬(p∧q)是假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過100個(gè)時(shí),每多訂購(gòu)一個(gè),訂購(gòu)的全部零件的出廠單價(jià)就降低0.02元,但實(shí)際出廠單價(jià)不能低于51元.
(1)當(dāng)一次訂購(gòu)量為多少個(gè)時(shí),零件的實(shí)際出廠單價(jià)恰降為51元?
(2)設(shè)一次訂購(gòu)量為x個(gè),零件的實(shí)際出廠單價(jià)為P元,寫出函數(shù)P=f(x)的表達(dá)式;
(3)當(dāng)銷售商一次訂購(gòu)500個(gè)零件時(shí),該廠獲得的利潤(rùn)是多少元?如果訂購(gòu)1000個(gè),利潤(rùn)又是多少元?(工廠售出一個(gè)零件的利潤(rùn)=實(shí)際出廠單價(jià)﹣成本)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com