【題目】某銀行推銷甲、乙兩種理財產(chǎn)品(每種產(chǎn)品限購30萬).每一件產(chǎn)品根據(jù)訂單金額不同劃分為:訂單金額不低于20萬為大額訂單,低于20萬為普通訂單.銀監(jiān)部門隨機調取購買這兩種產(chǎn)品的客戶各100戶,對他們的訂單進行分析,得到如圖所示的頻率分布直方圖:

將此樣本的頻率估計視為總體的概率.購買一件甲產(chǎn)品,若是大額訂單可盈利2萬元,若是普通訂單則虧損1萬元,購買一件乙產(chǎn)品,若是大額訂單可盈利1.5萬元,若是普通訂單則虧損0.5萬元.

1)記X為購買1件甲產(chǎn)品和1件乙產(chǎn)品所得的總利潤,求隨機變量X的數(shù)學期望;

2)假設購買4件甲產(chǎn)品和4件乙產(chǎn)品所獲得的利潤相等.

i)這4件甲產(chǎn)品和4件乙產(chǎn)品中各有大額訂單多少件?

(ⅱ)這4件甲產(chǎn)品和4件乙產(chǎn)品中大額訂單的概率哪個大?

【答案】(1)0.8萬元;(2)(i) 甲產(chǎn)品中大額訂單有2,乙產(chǎn)品中大額訂單有2;(ii) 甲產(chǎn)品中大額訂單的概率大.

【解析】

(1)由頻率分布直方圖可知甲產(chǎn)品為大額訂單概率為0.5,乙產(chǎn)品的大額定單的概率為0.4.列出X的取值,根據(jù)概率公式求得分布列,即可求得期望;

(2)(i)4件甲產(chǎn)品中大額訂單有m,4件乙產(chǎn)品中大額訂單有n.所獲得的利潤相等可知,因為,即可求得;

(ii) 分別計算4件產(chǎn)品中大額訂單有2件的概率通過數(shù)據(jù)分析即可得出結果.

(1)由頻率分布直方圖可得:甲產(chǎn)品為大額訂單概率為0.5,乙產(chǎn)品的大額定單的概率為0.4. X的取值為:3.5,1.5,0.5,-1.5.

,,,,

所以(萬元)

(2)(i)4件甲產(chǎn)品中大額訂單有m件,4件乙產(chǎn)品中大額訂單有n.

由題意可得,

,因為,所以,所以甲產(chǎn)品中大額訂單有2,乙產(chǎn)品中大額訂單有2.

(ii)4件甲產(chǎn)品中大額訂單有2件的概率為,

4件乙產(chǎn)品中大額訂單有2件的概率為,

甲產(chǎn)品中大額訂單的概率大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的極值;

(2)當時,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為函數(shù)的導函數(shù).

1)若函數(shù)的最小值為0,求實數(shù)的值;

2)若,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某百貨公司1~6月份的銷售量與利潤的統(tǒng)計數(shù)據(jù)如表:

月份

1

2

3

4

5

6

銷售量x/萬件

10

11

13

12

8

6

利潤y/萬元

22

25

29

26

16

12

(1)根據(jù)2~5月份的統(tǒng)計數(shù)據(jù),求出y關于x的回歸直線方程x+;

(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過2萬元,則認為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),在同一平面直角坐標系中,將曲線上的點按坐標變換得到曲線,以原點為極點,軸的正半軸為極軸,建立極坐標系.點的極坐標為.

1)求曲線的極坐標方程;

2)若過點且傾斜角為的直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新藥在進入臨床實驗之前,需要先通過動物進行有效性和安全性的實驗.現(xiàn)對某種新藥進行5000次動物實驗,一次實驗方案如下:選取3只白鼠對藥效進行檢驗,當3只白鼠中有2只或2只以上使用效果明顯,即確定實驗成功;若有且只有1效果明顯,則再取2只白鼠進行二次檢驗,當2只白鼠均使用效果明顯,即確定實驗成功,其余情況則確定實驗失敗.設對每只白鼠的實驗相互獨立,且使用效果明顯的概率均為

)若,設該新藥在一次實驗方案中實驗成功的概率為,求的值;

)若動物實驗預算經(jīng)費700萬元,對每只白鼠進行實驗需要300元,其他費用總計為100萬元,問該動物實驗總費用是否會超出預算,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓過點,離心率為分別是橢圓的左、右頂點,過右焦點且斜率為的直線與橢圓相交于兩點.

1)求橢圓的標準方程;

2)記、的面積分別為、,若,求的值;

3)記直線的斜率分別為、,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市場研究人員為了了解產(chǎn)業(yè)園引進的甲公司前期的經(jīng)營狀況,對該公司2018年連續(xù)六個月的利潤進行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應的折線圖,如圖所示

(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關系,求關于的線性回歸方程,并預測該公司2019年3月份的利潤;

(2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個月,但新材料的不穩(wěn)定性會導致材料損壞的年限不相同,現(xiàn)對兩種型號的新型材料對應的產(chǎn)品各件進行科學模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計如下表:

使用壽命

材料類型

個月

個月

個月

個月

總計

如果你是甲公司的負責人,你會選擇采購哪款新型材料?

參考數(shù)據(jù):.參考公式:回歸直線方程為,其中 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論上的單調性;

2)若,求不等式的解集.

查看答案和解析>>

同步練習冊答案