精英家教網 > 高中數學 > 題目詳情

【題目】已知雙曲線C:(a>0,b>0)的左、右焦點分別為F1,F2,P為雙曲線C上的一點,線段PF1與y軸的交點M恰好是線段PF1的中點,,其中O為坐標原點,則雙曲線C的漸近線的斜率與離心率分別是( )

A. ±1, B. 1, C. ±2, D. 2,

【答案】A

【解析】

由向量點積運算,以及投影的幾何意義得到,再根據雙曲線的幾何意義和定義得到F2P=b,F1P=2a+b,F1F2=2c,最終利用勾股定理得到可得到結果.

根據向量的點積運算公式得到

,

因為點M恰好是線段PF1的中點,O點為F1F2的中點,故MO為三角形F1F2P的中線,進而得到F2P=b,F2P垂直于x軸,F1F2=2c,根據雙曲線的定義得到F1P=2a+b,在三角形F1F2P中利用勾股定理得到,綜合兩式化簡得到 漸近線的斜率為±1,離心率為

故答案為:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為數列的前項和.任意正整數,均有為遞增數列

A. 充分不必要條件 B. 必要不充分條件

C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對哪些正整數n,存在正整數 m 及正整數,使得?其中可以相同,且.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(13分)

在平面直角坐標系xOy中,拋物線上異于坐標原點O的兩不同動點A、B滿足(如圖所示).

)求得重心G(即三角形三條中線的交點)的軌跡方程;

的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校高二期中考試后,教務處計劃對全年級數學成績進行統(tǒng)計分析,從男、女生中各隨機抽取100名學生,分別制成了男生和女生數學成績的頻率分布直方圖,如圖所示.

(1)若所得分數大于等于80分認定為優(yōu)秀,求男、女生優(yōu)秀人數各有多少人?

(2)在(1)中的優(yōu)秀學生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有1名男生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年雙11當天,某購物平臺的銷售業(yè)績高達2135億人民幣.與此同時,相關管理部門推出了針對電商的商品和服務的評價體系,現從評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,對商品的好評率為0.9,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為140次.

(1)請完成下表,并判斷是否可以在犯錯誤概率不超過0.5%的前提下,認為商品好評與服務好評有關?

對服務好評

對服務不滿意

合計

對商品好評

140

對商品不滿意

10

合計

200

(2)若將頻率視為概率,某人在該購物平臺上進行的3次購物中,設對商品和服務全好評的次數為X.

①求隨機變量X的分布列;

②求X的數學期望和方差.

附:,其中n=a+b+c+d.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x+1|.

(1)若不等式f(x)≥|2x+1|1的解集為A,且,求實數t的取值范圍;

(2)在(1)的條件下,若,證明:f(ab)>f(a)f(b).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一平面上有32個點,其中無三點共線證明在這32個點中至少能找到2135個四點組形成凸四邊形的四個頂點

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】南昌市在2018年召開了全球VR產業(yè)大會,為了增強對青少年VR知識的普及,某中學舉行了一次普及VR知識講座,并從參加講座的男生中隨機抽取了50人,女生中隨機抽取了70人參加VR知識測試,成績分成優(yōu)秀和非優(yōu)秀兩類,統(tǒng)計兩類成績人數得到如下的列聯表:

優(yōu)秀

非優(yōu)秀

總計

男生

35

50

女生

30

70

總計

45

75

120

1)確定,的值;

2)試判斷能否有90%的把握認為VR知識測試成績優(yōu)秀與否與性別有關;

附:

0.25

0.15

0.10

0.05

0.025

0.010

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習冊答案