【題目】下列說法正確的是( )
A.“”是“點到直線的距離為3”的充要條件
B.直線的傾斜角的取值范圍為
C.直線與直線平行,且與圓相切
D.離心率為的雙曲線的漸近線方程為
【答案】BC
【解析】
根據(jù)點到直線的距離公式判斷選項A錯誤;根據(jù)直線斜率的定義及正切函數(shù)的值域問題判斷選項B正確;根據(jù)兩直線平行的判定及直線與圓相切的判定,可判斷選項C正確;根據(jù)雙曲線漸近線的定義可判斷選項D錯誤.
選項A:由點到直線的距離為3,
可得:,解得或,
“”是“點到直線的距離為3”的充分不必要條件,
故選項A錯誤;
選項B:直線的斜率,
設(shè)直線的傾斜角為,則或,
,故選項B正確;
選項C:直線可化為,
其與直線平行,
圓的圓心到直線的距離為:
,
則直線與圓相切,故選項C正確;
選項D:離心率為,則
若焦點在x軸,則雙曲線的漸近線方程為,
若焦點在y軸,則雙曲線的漸近線方程為,
故選項D錯誤.
故選:BC.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,,,沿中位線DE折起后,點A對應(yīng)的位置為點P,.
(1)求證:平面平面DBCE;
(2)求證:平面平面PCE;
(3)求直線BP與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自2017年7月27日上映以來,《戰(zhàn)狼2》的票房一路高歌猛進,并不斷刷新華語電影票房紀錄.繼8月25日官方宣布沖破53億票房之后,根據(jù)外媒Worldwide Box Office給出的2017年周末全球票房最新排名,《戰(zhàn)狼2》以8.151億美元(約54.18億元)的成績成功殺入前五.通過收集并整理了《戰(zhàn)狼2》上映前兩周的票房(單位:億元)數(shù)據(jù),繪制出下面的條形圖.根據(jù)該條形圖,下列結(jié)論錯誤的是( )
A.在《戰(zhàn)狼2》上映前兩周中,前四天票房逐日遞增
B.在《戰(zhàn)狼2》上映前兩周中,日票房超過2億元的共有12天
C.在《戰(zhàn)狼2》上映前兩周中,8月5日,8月6日達到了票房的高峰期
D.在《戰(zhàn)狼2》上映前兩周中,前五日的票房平均數(shù)高于后五日的票房平均數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a是實數(shù),關(guān)于z的方程(z2-2z+5)(z2+2az+1)=0有4個互不相等的根,它們在復(fù)平面上對應(yīng)的4個點共圓,則實數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圖:的右頂點與拋物線:的焦點重合,橢圓的離心率為,過橢圓的右焦點且垂直于軸的直線截拋物線所得的弦長為.
(1)求橢圓和拋物線的方程;
(2)過點的直線與橢圓交于,兩點,點關(guān)于軸的對稱點為.當直線繞點旋轉(zhuǎn)時,直線是否經(jīng)過一定點?請判斷并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右焦點分別為,直線與橢圓相交于兩點;當直線經(jīng)過橢圓的下頂點和右焦點時,的周長為,且與橢圓的另一個交點的橫坐標為
(1)求橢圓的方程;
(2)點為內(nèi)一點,為坐標原點,滿足,若點恰好在圓上,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①,②,③這三個條件中任選一個,補充在下面問題中,若問題中的正整數(shù)k存在,求k的值;若k不存在,請說明理由.
設(shè)為等差數(shù)列的前n項和,是等比數(shù)列,______,,,.是否存在k,使得且?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“割圓術(shù)”是我國古代計算圓周率的一種方法.在公元年左右,由魏晉時期的數(shù)學(xué)家劉徽發(fā)明.其原理就是利用圓內(nèi)接正多邊形的面積逐步逼近圓的面積,進而求.當時劉微就是利用這種方法,把的近似值計算到和之間,這是當時世界上對圓周率的計算最精確的數(shù)據(jù).這種方法的可貴之處就是利用已知的、可求的來逼近未知的、要求的,用有限的來逼近無窮的.為此,劉微把它概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣”.這種方法極其重要,對后世產(chǎn)生了巨大影響,在歐洲,這種方法后來就演變?yōu)楝F(xiàn)在的微積分.根據(jù)“割圓術(shù)”,若用正二十四邊形來估算圓周率,則的近似值是( )(精確到)(參考數(shù)據(jù))
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com