【題目】2018年高考特別強(qiáng)調(diào)了要增加對數(shù)學(xué)文化的考查,為此某校高三年級特命制了一套與數(shù)學(xué)文化有關(guān)的專題訓(xùn)練卷(文、理科試卷滿分均為100分),并對整個(gè)高三年級的學(xué)生進(jìn)行了測試,現(xiàn)從這些學(xué)生中隨機(jī)抽取了50名學(xué)生的成績,按照成績?yōu)?/span>,,…,分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績均不低于50分).

(Ⅰ)求頻率分布直方圖中的的值,并估計(jì)所抽取的50名學(xué)生成績的中位數(shù)(用分?jǐn)?shù)表示);

(Ⅱ)若利用分層抽樣的方法從樣本中成績不低于70分的三組學(xué)生中抽取6人,再從這6人中隨機(jī)抽取2人參加這次考試的考后分析會(huì),試求組中至少有1人被抽到的概率.

【答案】(1)(2)

【解析】分析:(Ⅰ)先計(jì)算第2、3組的頻率和,再根據(jù)概率求x的值,再利用中位數(shù)公式求所抽取的50名學(xué)生成績的中位數(shù).( Ⅱ)利用古典概型求組中至少有1人被抽到的概率.

詳解:(Ⅰ)由頻率分布直方圖可得第2、3組的頻率和為

, .

設(shè)中位數(shù)為分,則有,

即所求的中位數(shù)為.

(Ⅱ)由(Ⅰ)可知,后三組中的人數(shù)分別為15,10,5,故這三組中所抽取的人數(shù)分別為3,2,1.

記成績在這組的3名學(xué)生分別為,,成績在這組的2名學(xué)生分別為,,成績在這組的1名學(xué)生為,則從中任抽取3人的所有可能結(jié)果為、、、、、、、、、、.15.

其中組中至少有1人被抽到的所有可能結(jié)果為、、、、、、、、.12

組中至少有1人被抽到的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個(gè)內(nèi)角,且其對邊分別為,若

(1)求角的值;

(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享汽車的出現(xiàn)為我們的出行帶來了極大的便利,當(dāng)然也為投資商帶來了豐厚的利潤,F(xiàn)某公司瞄準(zhǔn)這一市場,準(zhǔn)備投放共享汽車。該公司取得了在個(gè)省份投放共享汽車的經(jīng)營權(quán),計(jì)劃前期一次性投入元. 設(shè)在每個(gè)省投放共享汽車的市的數(shù)量相同(假設(shè)每個(gè)省的市的數(shù)量足夠多),每個(gè)市都投放輛共享汽車.由于各個(gè)市的多種因素的差異,在第個(gè)市的每輛共享汽車的管理成本為()元(其中為常數(shù)).經(jīng)測算,若每個(gè)省在個(gè)市投放共享汽車,則該公司每輛共享汽車的平均綜合管理費(fèi)用為元.(本題中不考慮共享汽車本身的費(fèi)用)

注:綜合管理費(fèi)用=前期一次性投入的費(fèi)用+所有共享汽車的管理費(fèi)用,平均綜合管理費(fèi)用=綜合管理費(fèi)用÷共享汽車總數(shù).

(1)的值;

(2)問要使該公司每輛共享汽車的平均綜合管理費(fèi)用最低,則每個(gè)省有幾個(gè)市投放共享汽車?此時(shí)每輛共享汽車的平均綜合管理費(fèi)用為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知△ABC中,∠ACB=90°,SA⊥平面ABCADSC,求證:AD⊥平面SBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在邊長為12的正方形AA'A1'A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA1'分別交BB1,CC1于點(diǎn)P,Q,將該正方形沿BB1、CC1折疊,使得A'A1'與AA1重合,構(gòu)成如圖2所示的三棱柱ABC﹣A1B1C1

(1)求三棱錐P﹣ABC與三棱錐Q﹣PAC的體積之和;

(2)求直線AQ與平面BCC1B1所成角的正弦值;

(3)求三棱錐Q﹣ABC的外接球半徑r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)邊上,,

(1)求的值;

(2)若的面積是,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一臺(tái)風(fēng)中心在港口南偏東方向上,距離港口千米處的海面上形成,并以每小時(shí)千米的速度向正北方向移動(dòng),距臺(tái)風(fēng)中心千米以內(nèi)的范圍將受到臺(tái)風(fēng)的影響,則港口受到臺(tái)風(fēng)影響的時(shí)間為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某氣象儀器研究所按以下方案測試一種彈射型氣象觀測儀器的垂直彈射高度:A、B、C三地位于同一水平面上,在C處進(jìn)行該儀器的垂直彈射,觀測點(diǎn)A、B兩地相距100米,∠BAC60°,在A地聽到彈射聲音的時(shí)間比在B地晚

秒. A地測得該儀器彈至最高點(diǎn)H時(shí)的仰角為30°.

(1)求A、C兩地的距離;

(2)求該儀器的垂直彈射高度CH.(聲音的傳播速度為340米/秒)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若正數(shù)x,y滿足15x﹣y=22,則x3+y3﹣x2﹣y2的最小值為

查看答案和解析>>

同步練習(xí)冊答案