已知函數(shù)f(x)=alnx-ax-3.
(1)當a=1時,求函數(shù)f(x)的單調區(qū)間;
(2)當a=2時,設函數(shù)數(shù)學公式,若在區(qū)間[1,e]上至少存在一個x0,使得h(x0)>f(x0)成立,求實數(shù)p的取值范圍.

解:(1)當a=1時,f(x)=lnx-x-3,(x>0),
,令f(x)=0,則x=1.
列表如下:
由表可知:f(x)在(0,1)上單調遞增;在(1,+∞)上單調遞減.
(2)當a=2時,f(x)=2lnx-2x-3.
令F(x)=h(x)-f(x)=(p-2)x--(2lnx-2x-3)=px-2lnx-
①當p≤0時,≤0,
∴在[1,e]上不存在x0滿足F(x)>0,即h(x0)>f(x0)不成立.
②當p>0時,F(xiàn)(x)=,
∵x∈[1,e],∴2e-2p≥0,∴F(x)>0在[1,e]上恒成立,故F(x)在[1,e]上單調遞增.
∴F(x)max=F(e)=
故只要,解得
所以P的取值范圍是
分析:(1)利用導數(shù)即可得出其單調區(qū)間;
(2)通過對p分類討論,令F(x)=h(x)-f(x),“在區(qū)間[1,e]上至少存在一個x0,使得h(x0)>f(x0)成立”?F(x)max>0即可.
點評:熟練掌握導數(shù)與函數(shù)單調性的關系及對問題正確等價轉化是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案