【題目】已知數(shù)列{an}的首項(xiàng), , .
(1)求證:數(shù)列為等比數(shù)列;
(2)記,若Sn<100,求最大正整數(shù)n;
(3)是否存在互不相等的正整數(shù)m,s,n,使m,s,n成等差數(shù)列,且am-1,as-1,an-1成等比數(shù)列?如果存在,請(qǐng)給以證明;如果不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)99;(3)不存在
【解析】試題分析:(1)根據(jù)可得,根據(jù),可知,即,據(jù)此即可求證;(2)根據(jù)等比數(shù)列的通項(xiàng)公式可得,進(jìn)而即可表示出,對(duì)其進(jìn)行整理可得,由于,所以有,即,至此,即可得到最大正整數(shù) ;(3)首先假設(shè)存在,根據(jù)等差數(shù)列的性質(zhì)可得,再根據(jù)等比的性質(zhì)可得,結(jié)合(2)中得到的通項(xiàng)公式可將其化簡(jiǎn)為,接下來(lái)再根據(jù)均值不等式可知,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,至此,再根據(jù)互不相等即可得結(jié)果.
試題解析:(1)因?yàn)?/span>=+,所以-1=-.又因?yàn)?/span>-1≠0,所以-1≠0(n∈N*).
所以數(shù)列為等比數(shù)列.
(2)由(1)可得-1=·n-1,所以=2·n+1.
Sn=++…+=n+2=n+2·=n+1-,
若Sn<100,則n+1-<100,因?yàn)楹瘮?shù)y= n+1-單調(diào)增, 所以最大正整數(shù)n的值為99.
(3)假設(shè)存在,則m+n=2s,(am-1)(an-1)=(as-1)2,
因?yàn)?/span>an=,所以=2,
化簡(jiǎn)得3m+3n=2·3s,因?yàn)?m+3n≥2·=2·3s,
當(dāng)且僅當(dāng)m=n時(shí)等號(hào),又m,s,n互不相等,所以不存在.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面四邊形ABCD中,AB=8,AD=5,CD=,∠A=,∠D=.
(Ⅰ)求△ABD的內(nèi)切圓的半徑;
(Ⅱ)求BC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 面, , , 為的中點(diǎn).
(Ⅰ)求證: 平面.
(Ⅱ)求二面角的余弦值.
(Ⅲ)在線段上是否存在點(diǎn),使得,若存在,求出的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在, , 上的奇函數(shù),當(dāng), 時(shí), ().
(Ⅰ)求的解析式;
(Ⅱ)設(shè), , ,求證:當(dāng)時(shí), 恒成立;
(Ⅲ)是否存在實(shí)數(shù),使得當(dāng), 時(shí), 的最小值是?如果存在,
求出實(shí)數(shù)的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分14分)如圖,已知橢圓:,其左右焦點(diǎn)為及,過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為,的中垂線與軸和軸分別交于兩點(diǎn),且、、構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)記△的面積為,△(為原點(diǎn))的面積為.試問(wèn):是否存在直線,使得?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)的快速發(fā)展,民用汽車(chē)的保有量也迅速增長(zhǎng).機(jī)動(dòng)車(chē)保有量的發(fā)展影響到環(huán)境質(zhì)量、交通安全、道路建設(shè)等諸多方面.在我國(guó),尤其是大中型城市,機(jī)動(dòng)車(chē)已成為城市空氣污染的重要來(lái)源.因此,合理預(yù)測(cè)機(jī)動(dòng)車(chē)保有量是未來(lái)進(jìn)行機(jī)動(dòng)車(chē)污染防治規(guī)劃、道路發(fā)展規(guī)劃等的重要前提.從2012年到2016年,根據(jù)“云南省某市國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)”中公布的數(shù)據(jù),該市機(jī)動(dòng)車(chē)保有量數(shù)據(jù)如表所示.
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
機(jī)動(dòng)車(chē)保有量(萬(wàn)輛) | 169 | 181 | 196 | 215 | 230 |
(1)在圖所給的坐標(biāo)系中作出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)建立機(jī)動(dòng)車(chē)保有量關(guān)于年份代碼的回歸方程;
(3)按照當(dāng)前的變化趨勢(shì),預(yù)測(cè)2017年該市機(jī)動(dòng)車(chē)保有量.
附注:回歸直線方程中的斜率和截距的最小二乘估計(jì)公式分別為:
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化工廠從今年一月起,若不改善生產(chǎn)環(huán)境,按生產(chǎn)現(xiàn)狀,每月收入為70萬(wàn)元,同時(shí)將受到環(huán)保部門(mén)的處罰,第一個(gè)月罰3萬(wàn)元,以后每月增加2萬(wàn)元.如果從今年一月起投資500萬(wàn)元添加回收凈化設(shè)備(改造設(shè)備時(shí)間不計(jì)),一方面可以改善環(huán)境,另一方面也可以大大降低原料成本.據(jù)測(cè)算,添加回收凈化設(shè)備并投產(chǎn)后的前5個(gè)月中的累計(jì)生產(chǎn)凈收入是生產(chǎn)時(shí)間個(gè)月的二次函數(shù)(是常數(shù)),且前3個(gè)月的累計(jì)生產(chǎn)凈收入可達(dá)309萬(wàn),從第6個(gè)月開(kāi)始,每個(gè)月的生產(chǎn)凈收入都與第5個(gè)月相同.同時(shí),該廠不但不受處罰,而且還將得到環(huán)保部門(mén)的一次性獎(jiǎng)勵(lì)100萬(wàn)元.
(1)求前8個(gè)月的累計(jì)生產(chǎn)凈收入的值;
(2)問(wèn)經(jīng)過(guò)多少個(gè)月,投資開(kāi)始見(jiàn)效,即投資改造后的純收入多于不改造時(shí)的純收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù),據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
A.0.40 B.0.30 C.0.35 D.0.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知定圓,定直線,過(guò)的一條動(dòng)直線與直線相交于,與圓相交于,兩點(diǎn),是中點(diǎn).
(Ⅰ)當(dāng)與垂直時(shí),求證:過(guò)圓心;
(Ⅱ)當(dāng)時(shí),求直線的方程;
(Ⅲ)設(shè),試問(wèn)是否為定值,若為定值,請(qǐng)求出的值;若不為定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com