【題目】如圖,在三棱柱中,平面為等邊三角形,為的中點(diǎn),為上的點(diǎn),且.
(1)求證:平面平面;
(2)求直線與平面所成角的正切值.
【答案】(1)證明見(jiàn)解析
(2)
【解析】
(1)分別取的中點(diǎn),連接,證明四邊形是平行四邊形,得,進(jìn)而證得平面,可得平面,即可證明平面平面;
(2)連接,首先證明為直線與平面所成的角,然后算出答案即可.
(1)如圖,分別取的中點(diǎn),連接,則有.
∵,∴,
∵,∴,
∴四邊形是平行四邊形,∴.
∵為等邊三角形,∴.
∵平面,∴平面平面,
又平面平面,∴平面,
∴平面.
∵平面,∴平面平面.
(2) 連接,
在直角三角形中,由,可得,.
∵,∴.
∵,∴,∴.
由(1)知,平面平面,平面平面,
∴平面,∴為直線與平面所成的角.
∵,
∴,即直線與平面所成角的正切值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,拋物線E頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求拋物線E的極坐標(biāo)方程;
(Ⅱ)過(guò)點(diǎn)傾斜角為的直線l交E于M,N兩點(diǎn),若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)滿足方程.
(1)求點(diǎn)的軌跡的方程;
(2)作曲線關(guān)于軸對(duì)稱的曲線,記為,在曲線上任取一點(diǎn),過(guò)點(diǎn)作曲線的切線,若切線與曲線交于,兩點(diǎn),過(guò)點(diǎn),分別作曲線的切線,,證明:,的交點(diǎn)必在曲線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)實(shí)數(shù)x,y滿足約束條件,若目標(biāo)函數(shù)的最大值為4,則ab的最大值為________,的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),,現(xiàn)有下列結(jié)論,其中正確的是:( )
①的圖象關(guān)于直線對(duì)稱;②的圖象關(guān)于點(diǎn)對(duì)稱;③在區(qū)間上是減函數(shù);④在區(qū)間內(nèi)有8個(gè)零點(diǎn).
A.①③B.②④C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最小值為0,其中.
(1)求的值;
(2)若對(duì)任意的,有恒成立,求實(shí)數(shù)的最小值;
(3)記,為不超過(guò)的最大整數(shù),求的值.
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年,全國(guó)各地區(qū)堅(jiān)持穩(wěn)中求進(jìn)工作總基調(diào),經(jīng)濟(jì)運(yùn)行總體平穩(wěn),發(fā)展水平邁上新臺(tái)階,發(fā)展質(zhì)量穩(wěn)步上升,人民生活福祉持續(xù)增進(jìn),全年最終消費(fèi)支出對(duì)國(guó)內(nèi)生產(chǎn)總值增長(zhǎng)的貢獻(xiàn)率為57.8%.下圖為2019年居民消費(fèi)價(jià)格月度漲跌幅度:(同比(本期數(shù)-去年同期數(shù))/去年同期數(shù),環(huán)比(本期數(shù)-上期數(shù))/上期數(shù)
下列結(jié)論中不正確的是( )
A.2019年第三季度的居民消費(fèi)價(jià)格一直都在增長(zhǎng)
B.2018年7月份的居民消費(fèi)價(jià)格比同年8月份要低一些
C.2019年全年居民消費(fèi)價(jià)格比2018年漲了2.5%以上
D.2019年3月份的居民消費(fèi)價(jià)格全年最低
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若函數(shù)有兩個(gè)不同的極值點(diǎn)、,求證:;
(3)設(shè),函數(shù)的反函數(shù)為,令,、、,,且,若時(shí),對(duì)任意的且,恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠共有50位工人組裝某種零件.下面的散點(diǎn)圖反映了工人們組裝每個(gè)零件所用的工時(shí)(單位:分鐘)與人數(shù)的分布情況.由散點(diǎn)圖可得,這50位工人組裝每個(gè)零件所用工時(shí)的中位數(shù)為___________.若將500個(gè)要組裝的零件分給每個(gè)工人,讓他們同時(shí)開(kāi)始組裝,則至少要過(guò)_________分鐘后,所有工人都完成組裝任務(wù).(本題第一空2分,第二空3分)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com