已知函數(shù)f(x)=ax-k的圖象過點(diǎn)(1,3),其反函數(shù)f-1(x)的圖象過點(diǎn)(2,0),則f(x)的表達(dá)式是
y=2x+1
y=2x+1
分析:由已知中函數(shù)f(x)=ax-k的圖象過點(diǎn)(1,3),其反函數(shù)f-1(x)的圖象過點(diǎn)(2,0),函數(shù)f(x)=ax-k的圖象過點(diǎn)(0,2),我們可以構(gòu)造一個(gè)關(guān)于a,k的方程組,解方程組求出a,k的值,即可得到f(x)的表達(dá)式.
解答:解:∵函數(shù)f(x)=ax-k的圖象過點(diǎn)(1,3),
∴3=a-k…①
又∵反函數(shù)f-1(x)的圖象過點(diǎn)(2,0),
∴函數(shù)f(x)=ax-k的圖象過點(diǎn)(0,2),
∴2=a0-k…②
聯(lián)立①②后,解得
a=2,k=-1
∴f(x)=2x+1
故答案為:y=2x+1
點(diǎn)評:本題考查的知識點(diǎn)是函數(shù)解析式的求解,反函數(shù),其中根據(jù)反函數(shù)f-1(x)的圖象過點(diǎn)(2,0),得到函數(shù)f(x)=ax-k的圖象過點(diǎn)(0,2),是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案