已知函數(shù)
(1)求函數(shù)的最小正周期;
(2)已知中,角所對的邊長分別為,若,,求的面積

(1);(2).

解析試題分析:(1)利用二倍角公式的變形:,及輔助角公式,可將化簡為,從而的最小正周期為;(2)由(1)及,可得:,根據(jù)可得,從而,舍去),再利用正弦定理,從而得,則,, 因此的面積.
試題解析:(1)∵,
, ∴的最小正周期為;
(2)由(1)及,∴,又∵,∴,
,又∵,∴,由正弦定理:,得,則,,  ∴.
考點:1.三角恒等變形;2.正弦定理解三角形.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知
(1)求函數(shù)的最小正周期.
(2)求函數(shù)在閉區(qū)間上的最小值并求當取最小值時,的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù);
(1).求的周期和單調遞增區(qū)間;
(2).若關于x的方程上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

受日月引力影響,海水會發(fā)生漲退潮現(xiàn)象.通常情況下,船在漲潮時駛進港口,退潮時離開港口.某港口在某季節(jié)每天港口水位的深度(米)是時間,單位:小時,表示0:00—零時)的函數(shù),其函數(shù)關系式為.已知一天中該港口水位的深度變化有如下規(guī)律:出現(xiàn)相鄰兩次最高水位的深度的時間差為12小時,最高水位的深度為12米,最低水位的深度為6米,每天13:00時港口水位的深度恰為10.5米.
(1)試求函數(shù)的表達式;
(2)某貨船的吃水深度(船底與水面的距離)為7米,安全條例規(guī)定船舶航行時船底與海底的距離不小于3.5米是安全的,問該船在當天的什么時間段能夠安全進港?若該船欲于當天安全離港,則它最遲應在當天幾點以前離開港口?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,某市新體育公園的中心廣場平面圖如圖所示,在y軸左側的觀光道曲線段是函數(shù),時的圖象且最高點B(-1,4),在y軸右側的曲線段是以CO為直徑的半圓弧.⑴試確定A,的值;⑵現(xiàn)要在右側的半圓中修建一條步行道CDO(單位:米),在點C與半圓弧上的一點D之間設計為直線段(造價為2萬元/米),從D到點O之間設計為沿半圓弧的弧形(造價為1萬元/米).設(弧度),試用來表示修建步行道的造價預算,并求造價預算的最大值?(注:只考慮步行道的長度,不考慮步行道的寬度)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義在區(qū)間上的函數(shù)y=f(x)的圖象關于直線x=-對稱,當x∈時,函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示.

(1)求函數(shù)y=f(x)在上的表達式;
(2)求方程f(x)=的解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求的值;
(2)設,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知函數(shù).
(1)若,且,求的值;
(2)求函數(shù)的最小正周期及單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),.
(1)若,求的最大值及相應的的取值集合;
(2)若的一個零點,且,求的值和的最小正周期.

查看答案和解析>>

同步練習冊答案