【題目】已知以為周期的函數(shù)若方程恰有五個(gè)實(shí)數(shù)解,則的取值范圍為______

【答案】

【解析】

試題據(jù)對(duì)函數(shù)的解析式進(jìn)行變形后發(fā)現(xiàn)當(dāng)x∈-1,1][35],[7,9]上時(shí),fx)的圖象為半個(gè)橢圓.根據(jù)圖象推斷要使方程恰有5個(gè)實(shí)數(shù)解,則需直線y=與第二個(gè)橢圓相交,而與第三個(gè)橢圓不公共點(diǎn).把直線分別代入橢圓方程,根據(jù)可求得m的范圍。解:當(dāng)x∈-1,1]時(shí),將函數(shù)化為方程y≥0),實(shí)質(zhì)上為一個(gè)半橢圓,其圖象如圖所示,同時(shí)在坐標(biāo)系中作出當(dāng)x∈1,3]得圖象,再根據(jù)周期性作出函數(shù)其它部分的圖象,由圖易知直線 y=與第二個(gè)橢圓相交,而與第三個(gè)半橢圓無(wú)公共點(diǎn)時(shí),方程恰有5個(gè)實(shí)數(shù)解,將y=代入中得到,,(9m2+1x2-72m2x+135m2=0,令t=9m2t0),則(t+1x2-8tx+15t=0,由△=8t2-4×15t t+1)>0,得t15,由9m215,且m0m ,同樣由y=代入0可計(jì)算得 m,故可知m的范圍

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有2013位來(lái)自不同國(guó)家的代表參加一個(gè)會(huì)議,每位代表都懂得若干種語(yǔ)言,已知其中任意四位代表之間都可進(jìn)行交談而不需要此四位代表以外的其他人幫助,即此四人中的任意兩人都能講同一種語(yǔ)言而實(shí)現(xiàn)直接溝通,或者通過(guò)第三個(gè)人的翻譯實(shí)現(xiàn)間接溝通,或者通過(guò)他們各自的翻譯能講的同一種語(yǔ)言實(shí)現(xiàn)低效的間接溝通,證明:可以將所有代表分配住進(jìn)671個(gè)房間,每個(gè)房間住3人,使得每個(gè)房間的3人都可以交談。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求經(jīng)過(guò)橢圓右焦點(diǎn)且與直線垂直的直線的極坐標(biāo)方程;

(2)若為橢圓上任意-點(diǎn),當(dāng)點(diǎn)到直線距離最小時(shí),求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓周上有個(gè)白點(diǎn),先將其中一個(gè)染為黑色(稱為第一次染色),對(duì)任何正整數(shù),次染色后按逆時(shí)針?lè)较蜷g隔個(gè)點(diǎn)將下個(gè)點(diǎn)染成與原來(lái)顏色相反的顏色(稱為第次染色).

(1)對(duì)給定正整數(shù),是否存在正整數(shù),使次染色后個(gè)點(diǎn)均為白色?

(2)對(duì)給定正整數(shù),是否存在正整數(shù),使次染色后個(gè)點(diǎn)均為黑色?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)判斷的單調(diào)性;

(2)若函數(shù)存在極值,求這些極值的和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過(guò)千分之一,則其生產(chǎn)部門(mén)當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司2014-2018年的相關(guān)數(shù)據(jù)如下表所示:

年份

2014

2015

2016

2017

2018

年生產(chǎn)臺(tái)數(shù)(萬(wàn)臺(tái))

2

4

5

6

8

該產(chǎn)品的年利潤(rùn)(百萬(wàn)元)

30

40

60

50

70

年返修臺(tái)數(shù)(臺(tái))

19

58

45

71

70

注:

(1)從該公司2014-2018年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),求這3年中至少有2年生產(chǎn)部門(mén)考核優(yōu)秀的概率.

(2)利用上表中五年的數(shù)據(jù)求出年利潤(rùn)(百萬(wàn)元)關(guān)于年生產(chǎn)臺(tái)數(shù)(萬(wàn)臺(tái))的回歸直線方程是 ①.現(xiàn)該公司計(jì)劃從2019年開(kāi)始轉(zhuǎn)型,并決定2019年只生產(chǎn)該產(chǎn)品1萬(wàn)臺(tái),且預(yù)計(jì)2019年可獲利32(百萬(wàn)元);但生產(chǎn)部門(mén)發(fā)現(xiàn),若用預(yù)計(jì)的2019年的數(shù)據(jù)與2014-2018年中考核優(yōu)秀年份的數(shù)據(jù)重新建立回歸方程,只有當(dāng)重新估算的,的值(精確到0.01),相對(duì)于①中,的值的誤差的絕對(duì)值都不超過(guò)時(shí),2019年該產(chǎn)品返修率才可低于千分之一.若生產(chǎn)部門(mén)希望2019年考核優(yōu)秀,能否同意2019年只生產(chǎn)該產(chǎn)品1萬(wàn)臺(tái)?請(qǐng)說(shuō)明理由.

(參考公式:, ,相對(duì)的誤差為.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20203月,各行各業(yè)開(kāi)始復(fù)工復(fù)產(chǎn),生活逐步恢復(fù)常態(tài),某物流公司承擔(dān)從甲地到乙地的蔬菜運(yùn)輸業(yè)務(wù).已知該公司統(tǒng)計(jì)了往年同期200天內(nèi)每天配送的蔬菜量X40X200,單位:件.注:蔬菜全部用統(tǒng)一規(guī)格的包裝箱包裝),并分組統(tǒng)計(jì)得到表格如表:

蔬菜量X

[40,80

[80,120

[120160

[160,200

天數(shù)

25

50

100

25

若將頻率視為概率,試解答如下問(wèn)題:

1)該物流公司負(fù)責(zé)人決定隨機(jī)抽出3天的數(shù)據(jù)來(lái)分析配送的蔬菜量的情況,求這3天配送的蔬菜量中至多有2天小于120件的概率;

2)該物流公司擬一次性租賃一批貨車專門(mén)運(yùn)營(yíng)從甲地到乙地的蔬菜運(yùn)輸.已知一輛貨車每天只能運(yùn)營(yíng)一趟,每輛貨車每趟最多可裝載40件,滿載才發(fā)車,否則不發(fā)車.若發(fā)車,則每輛貨車每趟可獲利2000元;若未發(fā)車,則每輛貨車每天平均虧損400元.為使該物流公司此項(xiàng)業(yè)務(wù)的營(yíng)業(yè)利潤(rùn)最大,該物流公司應(yīng)一次性租賃幾輛貨車?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)設(shè),求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)在其定義域內(nèi)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子中有大小、形狀完全相同的四個(gè)小球,分別寫(xiě)有和、“諧”、“!薄皥@”四個(gè)字,有放回地從中任意摸出一個(gè)小球,直到“和”、“諧”兩個(gè)字都摸到就停止摸球,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止摸球的概率。利用電腦隨機(jī)產(chǎn)生之間取整數(shù)值的隨機(jī)數(shù),分別用,,代表“和”、“諧”、“校”、“園”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下組隨機(jī)數(shù):

由此可以估計(jì),恰好第三次就停止摸球的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案