【題目】已知的一個(gè)頂點(diǎn)為拋物線(xiàn)的頂點(diǎn), , 兩點(diǎn)都在拋物線(xiàn)上,且.
(1)求證:直線(xiàn)必過(guò)一定點(diǎn);
(2)求證: 面積的最小值.
【答案】(1)詳見(jiàn)解析(2)當(dāng)時(shí), 的面積取得最小值為
【解析】試題分析:(1)由于,所以設(shè)所在的直線(xiàn)的方程為(),則直線(xiàn)的方程為.分別與拋物線(xiàn)方程組方程組解得A,B點(diǎn)坐標(biāo)。由AB直線(xiàn)方程可寫(xiě)出定點(diǎn),要注意直線(xiàn)AB斜率不存在時(shí)情況。(2)由(1)知直線(xiàn)AB過(guò)定點(diǎn)(2,0),所以可設(shè)直線(xiàn)的方程為.與拋物線(xiàn)組方程組。由韋達(dá)定理與面積公式,可求得面積最小值。
試題解析:(1)設(shè)所在的直線(xiàn)的方程為(),則直線(xiàn)的方程為.
由,解得或,即點(diǎn)的坐標(biāo)為
同理可求得點(diǎn)的坐標(biāo)為
∴當(dāng),即時(shí),直線(xiàn)的方程為
化簡(jiǎn)并整理,得
當(dāng)時(shí),恒有
當(dāng),即時(shí),直線(xiàn)的方程為,過(guò)點(diǎn).
故直線(xiàn)過(guò)定點(diǎn).
(2)由于直線(xiàn)過(guò)定點(diǎn),記為點(diǎn),所以可設(shè)直線(xiàn)的方程為.
由,消去并整理得,
∴,
于是
∴當(dāng)時(shí), 的面積取得最小值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,點(diǎn)是直線(xiàn)上的動(dòng)點(diǎn),過(guò)點(diǎn)作橢圓的切線(xiàn),切點(diǎn)為,為坐標(biāo)原點(diǎn).
(1)若切線(xiàn)的斜率為1,求點(diǎn)的坐標(biāo);
(2)求的面積的最小值,并求出此時(shí)的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),函數(shù).
(1) 若,求曲線(xiàn)在處的切線(xiàn)方程;
(2)求函數(shù)單調(diào)區(qū)間
(3) 若有兩個(gè)零點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形中,,,,分別在,上,且,,沿將四邊形折成四邊形,使點(diǎn)在平面上的射影在直線(xiàn)上.
(1)求證:平面;
(2)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中a,.
(I)若直線(xiàn)是曲線(xiàn)的切線(xiàn),求ab的最大值;
(Ⅱ)設(shè),若關(guān)于x的方程有兩個(gè)不相等的實(shí)根,求a的最大整數(shù)值.(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集包含[–1,1],求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax﹣cosx,a≠0.
(1)若函數(shù)f(x)為單調(diào)函數(shù),求a的取值范圍;
(2)若x∈[0,2π],求:當(dāng)a≥時(shí),函數(shù)f(x)僅有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義首項(xiàng)為1且公比為正數(shù)的等比數(shù)列為“M-數(shù)列”.
(1)已知等比數(shù)列{an}滿(mǎn)足:,求證:數(shù)列{an}為“M-數(shù)列”;
(2)已知數(shù)列{bn}滿(mǎn)足:,其中Sn為數(shù)列{bn}的前n項(xiàng)和.
①求數(shù)列{bn}的通項(xiàng)公式;
②設(shè)m為正整數(shù),若存在“M-數(shù)列”{cn},對(duì)任意正整數(shù)k,當(dāng)k≤m時(shí),都有成立,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩隊(duì)進(jìn)行防溺水專(zhuān)題知識(shí)競(jìng)賽,每隊(duì)3人,首輪比賽每人一道必答題,答對(duì)者則為本隊(duì)得1分,答錯(cuò)或不答得0分,己知甲隊(duì)每人答對(duì)的概率分別為,,,乙隊(duì)每人答對(duì)的概率均為.設(shè)每人回答正確與否互不影響,用表示首輪比賽結(jié)束后甲隊(duì)的總得分.
(1)求隨機(jī)變量的分布列;
(2)求在首輪比賽結(jié)束后甲隊(duì)和乙隊(duì)得分之和為2的條件下,甲隊(duì)比乙隊(duì)得分高的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com