【題目】如圖,在四棱柱ABCDA1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB⊥AC,AB1,ACAA12,ADCD,且點MN分別為B1CD1D的中點.

)求證:MN∥平面ABCD;

)求二面角D1ACB1的正弦值;

)設E為棱A1B1上的點.若直線NE和平面ABCD所成角的正弦值為,求線段A1E的長.

【答案】)詳見解析

【解析】

如圖,以A為原點建立空間直角坐標系,依題意可得A0,0,0),B0,10),C2,0,0),D1,-20),A100,2),B101,2),C120,2),D11,-2,2),又因為MN分別為B1CD1D的中點,得 M,N1,-21).

)依題意,可得n=(0,01)為平面ABCD的一個法向量,

由此可得,n0,又因為直線MN平面ABCD,

所以MN∥平面ABCD

)=(1,-2,2),=(2,0,0),

n1=(x1,y1z1)為平面ACD1的法向量,則

不妨設z11

可得 n1=(0,11),

n2=(x2,y2,z2)為平面ACB1的一個法向量,

則又=(0,1, 2),得

,不妨設z21,可得n2=(0,-21).

因此有cosn1,n2〉==-,

于是sinn1n2〉=,

所以二面角D1ACB1的正弦值為

)依題意,可設,其中λ∈[0,1],則E0,λ2),從而=(-1λ2,1),又n=(0,0,1)為平面ABCD的一個法向量,由已知得

cos,n〉==,整理得λ230,又因為λ∈[0,1],解得λ2,

所以線段A1E的長為2

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,過點的直線與橢圓交于兩點,延長交橢圓于點,的周長為8.

(1)求的離心率及方程;

(2)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過拋物線)上一點,作兩條直線分別交拋物線于點,,若的斜率滿足.

(1)證明:直線的斜率為定值,并求出該定值;

(2)若直線軸上的截距,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題:

①若A、B、C、D是空間任意四點,則有;

、共線的充要條件;

③對空間任意一點P與不共線的三點A、B、C,若,(y,zR),則P、A、B、C四點共面.

其中不正確命題的個數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C1的漸近線是x±2y=0,焦點坐標是F1-0)、F2,0).

1)求雙曲線C1的方程;

2)若橢圓C2與雙曲線C1有公共的焦點,且它們的離心率之和為,點P在橢圓C2上,且|PF1|=4,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若點P是直線2x+y+10=0上的動點,直線PA、PB分別與圓x2+y2=4相切于A、B兩點,則四邊形PAOB(O為坐標原點)面積的最小值為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60)[60,70),[70,80),[80,90)[90,100]

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;

(3)若這100名學生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學成績相應分數(shù)段的人數(shù)(y)之比如下表所示,求數(shù)學成績在[50,90)之外的人數(shù).

分數(shù)段

[50,60)

[60,70)

[70,80)

[80,90)

xy

11

21

34

45

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市10000名職業(yè)中學高三學生參加了一項綜合技能測試,從中隨機抽取100名學生的測試成績,制作了以下的測試成績(滿分是184分)的頻率分布直方圖.

市教育局規(guī)定每個學生需要繳考試費100元.某企業(yè)根據(jù)這100000名職業(yè)中學高三學生綜合技能測試成績來招聘員工,劃定的招聘錄取分數(shù)線為172分,且補助已經(jīng)被錄取的學生每個人元的交通和餐補費.

(1)已知甲、乙兩名學生的測試成績分別為168分和170分,求技能測試成績的中位數(shù),并對甲、乙的成績作出客觀的評價;

(2)令表示每個學生的交費或獲得交通和餐補費的代數(shù)和,把的函數(shù)來表示,并根據(jù)頻率分布直方圖估計的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有多少種不同的方法將集合中的元素歸入三個有序集合,使得每個元素至少含于其中一個集合之中,這三個集合的交是空集,而其中任兩個集合的交都不是空集?

查看答案和解析>>

同步練習冊答案