【題目】如圖,在四棱柱ABCDA1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且點(diǎn)M和N分別為B1C和D1D的中點(diǎn).
(Ⅰ)求證:MN∥平面ABCD;
(Ⅱ)求二面角D1-AC-B1的正弦值;
(Ⅲ)設(shè)E為棱A1B1上的點(diǎn).若直線NE和平面ABCD所成角的正弦值為,求線段A1E的長(zhǎng).
【答案】(Ⅰ)詳見解析 (Ⅱ)(Ⅲ)
【解析】
如圖,以A為原點(diǎn)建立空間直角坐標(biāo)系,依題意可得A(0,0,0),B(0,1,0),C(2,0,0),D(1,-2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,-2,2),又因?yàn)?/span>M,N分別為B1C和D1D的中點(diǎn),得 M,N(1,-2,1).
(Ⅰ)依題意,可得n=(0,0,1)為平面ABCD的一個(gè)法向量,=,
由此可得,n=0,又因?yàn)橹本MN平面ABCD,
所以MN∥平面ABCD.
(Ⅱ)=(1,-2,2),=(2,0,0),
設(shè)n1=(x1,y1,z1)為平面ACD1的法向量,則
即
不妨設(shè)z1=1,
可得 n1=(0,1,1),
設(shè)n2=(x2,y2,z2)為平面ACB1的一個(gè)法向量,
則又=(0,1, 2),得
,不妨設(shè)z2=1,可得n2=(0,-2,1).
因此有cos〈n1,n2〉==-,
于是sin〈n1,n2〉=,
所以二面角D1-AC-B1的正弦值為.
(Ⅲ)依題意,可設(shè),其中λ∈[0,1],則E(0,λ,2),從而=(-1,λ+2,1),又n=(0,0,1)為平面ABCD的一個(gè)法向量,由已知得
cos〈,n〉===,整理得λ2+4λ-3=0,又因?yàn)?/span>λ∈[0,1],解得λ=-2,
所以線段A1E的長(zhǎng)為-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,過點(diǎn)的直線與橢圓交于兩點(diǎn),延長(zhǎng)交橢圓于點(diǎn),的周長(zhǎng)為8.
(1)求的離心率及方程;
(2)試問:是否存在定點(diǎn),使得為定值?若存在,求;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過拋物線()上一點(diǎn),作兩條直線分別交拋物線于點(diǎn),,若與的斜率滿足.
(1)證明:直線的斜率為定值,并求出該定值;
(2)若直線在軸上的截距,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
①若A、B、C、D是空間任意四點(diǎn),則有;
②是、共線的充要條件;
③對(duì)空間任意一點(diǎn)P與不共線的三點(diǎn)A、B、C,若,(,y,z∈R),則P、A、B、C四點(diǎn)共面.
其中不正確命題的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C1的漸近線是x±2y=0,焦點(diǎn)坐標(biāo)是F1(-,0)、F2(,0).
(1)求雙曲線C1的方程;
(2)若橢圓C2與雙曲線C1有公共的焦點(diǎn),且它們的離心率之和為,點(diǎn)P在橢圓C2上,且|PF1|=4,求∠F1PF2的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)P是直線2x+y+10=0上的動(dòng)點(diǎn),直線PA、PB分別與圓x2+y2=4相切于A、B兩點(diǎn),則四邊形PAOB(O為坐標(biāo)原點(diǎn))面積的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試語文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績(jī)的平均分;
(3)若這100名學(xué)生語文成績(jī)某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如下表所示,求數(shù)學(xué)成績(jī)?cè)?/span>[50,90)之外的人數(shù).
分?jǐn)?shù)段 | [50,60) | [60,70) | [70,80) | [80,90) |
x∶y | 1∶1 | 2∶1 | 3∶4 | 4∶5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市10000名職業(yè)中學(xué)高三學(xué)生參加了一項(xiàng)綜合技能測(cè)試,從中隨機(jī)抽取100名學(xué)生的測(cè)試成績(jī),制作了以下的測(cè)試成績(jī)(滿分是184分)的頻率分布直方圖.
市教育局規(guī)定每個(gè)學(xué)生需要繳考試費(fèi)100元.某企業(yè)根據(jù)這100000名職業(yè)中學(xué)高三學(xué)生綜合技能測(cè)試成績(jī)來招聘員工,劃定的招聘錄取分?jǐn)?shù)線為172分,且補(bǔ)助已經(jīng)被錄取的學(xué)生每個(gè)人元的交通和餐補(bǔ)費(fèi).
(1)已知甲、乙兩名學(xué)生的測(cè)試成績(jī)分別為168分和170分,求技能測(cè)試成績(jī)的中位數(shù),并對(duì)甲、乙的成績(jī)作出客觀的評(píng)價(jià);
(2)令表示每個(gè)學(xué)生的交費(fèi)或獲得交通和餐補(bǔ)費(fèi)的代數(shù)和,把用的函數(shù)來表示,并根據(jù)頻率分布直方圖估計(jì)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】問:有多少種不同的方法將集合中的元素歸入三個(gè)(有序)集合,使得每個(gè)元素至少含于其中一個(gè)集合之中,這三個(gè)集合的交是空集,而其中任兩個(gè)集合的交都不是空集?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com