【題目】已知函數(shù).

1)求函數(shù)的單調(diào)增區(qū)間;

2)函數(shù),當(dāng)時(shí),恒成立,求整數(shù)的最小值.

【答案】1)單調(diào)增區(qū)間是;單調(diào)減區(qū)間是22

【解析】

1)利用的導(dǎo)函數(shù)求得的單調(diào)增區(qū)間.

2)解法一:將不等式分離常數(shù),得到,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的最大值,由此求得的取值范圍,進(jìn)而求得的最小值.

解法二:將不等式分離常數(shù),得到,構(gòu)造函數(shù),對(duì)分成、兩種情況進(jìn)行分類討論,由此求得的取值范圍.

1)因?yàn)?/span>,

由于時(shí),由,

所以函數(shù)的單調(diào)增區(qū)間是;單調(diào)減區(qū)間是

2)解法一:因?yàn)?/span>,即,因?yàn)?/span>,

所以,令,

所以

設(shè),

,

所以時(shí),

上是增函數(shù),

因?yàn)?/span>,

當(dāng)時(shí),

.

所以存在使,

所以當(dāng)時(shí),,

當(dāng)時(shí),

所以上增函數(shù),上是減函數(shù),

有最大值為

,

因?yàn)?/span>,,所以

,即整數(shù)的最小值為2.

解法二:因?yàn)?/span>,即,因?yàn)?/span>

所以,令,

i)當(dāng)時(shí),因?yàn)?/span>,所以

因此,所以只需;

ii)當(dāng)時(shí),因?yàn)?/span>,則,

所以

因此只需,即,

構(gòu)造函數(shù)

,

當(dāng)時(shí),上單調(diào)遞減,

當(dāng)時(shí),

,不滿足題意;

當(dāng)時(shí),,

,故不滿足題意;

綜上可知,整數(shù)的最小值為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市場(chǎng)研究人員為了了解產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營(yíng)狀況,對(duì)該公司2018年連續(xù)六個(gè)月的利潤(rùn)進(jìn)行了統(tǒng)計(jì),并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示

(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(rùn)(單位:百萬元)與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)該公司2019年3月份的利潤(rùn);

(2)甲公司新研制了一款產(chǎn)品,需要采購(gòu)一批新型材料,現(xiàn)有,兩種型號(hào)的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個(gè)月,但新材料的不穩(wěn)定性會(huì)導(dǎo)致材料損壞的年限不相同,現(xiàn)對(duì)兩種型號(hào)的新型材料對(duì)應(yīng)的產(chǎn)品各件進(jìn)行科學(xué)模擬測(cè)試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計(jì)如下表:

使用壽命

材料類型

個(gè)月

個(gè)月

個(gè)月

個(gè)月

總計(jì)

如果你是甲公司的負(fù)責(zé)人,你會(huì)選擇采購(gòu)哪款新型材料?

參考數(shù)據(jù):.參考公式:回歸直線方程為,其中 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的普通方程為,直線的參數(shù)方程為為參數(shù)),其中.以坐標(biāo)為極點(diǎn),以軸非負(fù)半軸為極軸,建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程和直線的普通方程;

2)設(shè)點(diǎn),的極坐標(biāo)方程為,直線的交點(diǎn)分別為,.當(dāng)為等腰直角三角形時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)集,在中隨機(jī)取出三個(gè)點(diǎn),則這三個(gè)點(diǎn)兩兩之間距離不超過2的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記無窮數(shù)列的前n項(xiàng),,,的最大項(xiàng)為,第n項(xiàng)之后的各項(xiàng),的最小項(xiàng)為

1)若數(shù)列的通項(xiàng)公式為,寫出,,;

2)若數(shù)列的通項(xiàng)公式為,判斷是否為等差數(shù)列,若是,求出公差;若不是,請(qǐng)說明理由;

3)若數(shù)列為公差大于零的等差數(shù)列,求證:是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓.

)求橢圓的方程;

)設(shè)為原點(diǎn),過原點(diǎn)的直線(不與軸垂直)與橢圓交于、兩點(diǎn),直線、軸分別交于點(diǎn)、.問:軸上是否存在定點(diǎn),使得?若存在,求點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體的棱長(zhǎng)為2,點(diǎn)分別是棱的中點(diǎn),則二面角的余弦值為_________;若動(dòng)點(diǎn)在正方形(包括邊界)內(nèi)運(yùn)動(dòng),且平面,則線段的長(zhǎng)度范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年世界讀書日,陳老師給全班同學(xué)開了一份書單,推薦同學(xué)們閱讀,并在2020年世界讀書日時(shí)交流讀書心得.經(jīng)了解,甲、乙兩同學(xué)閱讀書單中的書本有如下信息:

①甲同學(xué)還剩的書本未閱讀;

②乙同學(xué)還剩5本未閱讀;

③有的書本甲、乙兩同學(xué)都沒閱讀.

則甲、乙兩同學(xué)已閱讀的相同的書本有(

A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1是由邊長(zhǎng)為4的正六邊形,矩形,組成的一個(gè)平面圖形,將其沿,折起得幾何體,使得,且平面平面,如圖2.

1)證明:圖2中,平面平面

2)設(shè)點(diǎn)M為圖2中線段上一點(diǎn),且,若直線平面,求圖2中的直線與平面所成角的正弦值

查看答案和解析>>

同步練習(xí)冊(cè)答案