【題目】下列命題中正確的是( )
A.過平面外一點作這個平面的垂面有且只有一個
B.過直線外一點作這條直線的平行平面有且只有一個
C.過直線外一點作這條直線的垂線有且只有一條
D.過平面外的一條斜線作這個平面的垂面有且只有一個
【答案】D
【解析】
A錯誤;如圖長方體中,
是平面ABCD外一點,平面
B錯誤;是直線AB外一點,
C錯誤;是直線AB外一點,
D正確;是平面ABCD的一條斜線,平面假設過做一個平面則這與是平面ABCD的一條斜線矛盾。
所以過平面外的一條斜線作這個平面的垂面有且只有一個。故選D
【考點精析】解答此題的關鍵在于理解空間中直線與直線之間的位置關系的相關知識,掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點,以及對空間中直線與平面之間的位置關系的理解,了解直線在平面內(nèi)—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點.
科目:高中數(shù)學 來源: 題型:
【題目】國Ⅳ標準規(guī)定:輕型汽車的屢氧化物排放量不得超過80mg/km.根據(jù)這個標準,檢測單位從某出租車公司運營的A、B兩種型號的出租車中分別抽取5輛,對其氮氧化物的排放量進行檢測,檢測結(jié)果記錄如表(單位:mg/km)
A | 85 | 80 | 85 | 60 | 90 |
B | 70 | x | 95 | y | 75 |
由于表格被污損,數(shù)據(jù)x,y看不清,統(tǒng)計員只記得A、B兩種出租車的氮氧化物排放量的平均值相等,方差也相等.
(1)求表格中x與y的值;
(2)從被檢測的5輛B種型號的出租車中任取2輛,記“氮氧化物排放量超過80mg/km”的車輛數(shù)為X,求X=1時的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()的離心率為,以原點為圓心,橢圓的長半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)已知點為動直線與橢圓的兩個交點,問:在軸上是否存在定點,使得為定值?若存在,試求出點的坐標和定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ,左焦點是.
(1)若左焦點與橢圓的短軸的兩個端點是正三角形的三個頂點,點在橢圓上.求橢圓的方程;
(2)過原點且斜率為的直線與(1)中的橢圓交于不同的兩點,設,求四邊形的面積取得最大值時直線的方程;
(3)過左焦點的直線交橢圓于兩點,直線交直線于點,其中是常數(shù),設, ,計算的值(用的代數(shù)式表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)
(Ⅰ)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;
(Ⅱ)問:是否存在常數(shù),當時, 的值域為區(qū)間,且的長度為.(說明:對于區(qū)間,稱為區(qū)間長度)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=(cosx﹣sinx)sin(x+)﹣2asinx+b(a>0).
(1)若b=1,且對任意 , 恒有f(x)>0,求a的取值范圍;
(2)若f(x)的最大值為1,最小值為﹣4,求實數(shù)a,b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com