【題目】如圖,橢圓:的離心率是,長(zhǎng)軸是圓:的直徑.點(diǎn)是橢圓的下頂點(diǎn),,是過(guò)點(diǎn)且互相垂直的兩條直線,與圓相交于,兩點(diǎn),交橢圓于另一點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)的面積取最大值時(shí),求直線的方程.
【答案】(1)(2)
【解析】
(1)根據(jù)題意,由橢圓的幾何性質(zhì)可得,解可得、的值,將其值代入橢圓的方程即可得答案;
(2)設(shè),,,直線的方程為,由直線與圓的位置關(guān)系分析可得;聯(lián)立直線與橢圓的方程,分析可得,進(jìn)而可得的面積為,結(jié)合基本不等式的性質(zhì)分析可得答案.
解:(1)由題意得:,解得:,,
所以橢圓的方程為.
(2)設(shè),,.由題意知直線的斜率存在,不妨設(shè)其為,
則直線的方程為.
又圓:,故點(diǎn)到直線的距離,
所以.
又,故直線的方程為.
由,消去,整理得,故.
所以由弦長(zhǎng)公式得.
設(shè)的面積為,則,
所以,
當(dāng)且僅當(dāng)時(shí)取等號(hào).所以所求直線的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四面體SABC中若三條側(cè)棱SA,SB,SC兩兩互相垂直,且SA=1,SB=,SC=,則四面體ABCD的外接球的表面積為( )
A.8πB.6πC.4πD.2π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AD=2AB=4,E為BC的中點(diǎn),現(xiàn)將△BAE與△DCE折起,使得平面BAE及平面DEC都與平面ADE垂直.
(1)求證:BC∥平面ADE;
(2)求二面角A﹣BE﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將4本不同的書(shū)隨機(jī)放入如圖所示的編號(hào)為1,2,3,4的四個(gè)抽屜中.
1 | 2 | 3 | 4 |
(Ⅰ)求4本書(shū)恰好放在四個(gè)不同抽屜中的概率;
(Ⅱ)隨機(jī)變量表示放在2號(hào)抽屜中書(shū)的本數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:經(jīng)過(guò)點(diǎn),,直線:與橢圓相交于,兩點(diǎn),與圓相切與點(diǎn).
(1)求橢圓的方程;
(2)以線段,為鄰邊作平行四邊形,若點(diǎn)在橢圓上,且滿(mǎn)足(是坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍;
(3)是否為定值,如果是,求的值;如果不是,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我國(guó)多地區(qū)遭遇了霧霾天氣,引起口罩熱銷(xiāo).某品牌口罩原來(lái)每只成本為6元.售價(jià)為8元,月銷(xiāo)售5萬(wàn)只.
(1)據(jù)市場(chǎng)調(diào)查,若售價(jià)每提高0.5元,月銷(xiāo)售量將相應(yīng)減少0.2萬(wàn)只,要使月總利潤(rùn)不低于原來(lái)的月總利潤(rùn)(月總利潤(rùn)月銷(xiāo)售總收入月總成本),該口罩每只售價(jià)最多為多少元?
(2)為提高月總利潤(rùn),廠家決定下月進(jìn)行營(yíng)銷(xiāo)策略改革,計(jì)劃每只售價(jià)元,并投入萬(wàn)元作為營(yíng)銷(xiāo)策略改革費(fèi)用.據(jù)市場(chǎng)調(diào)查,每只售價(jià)每提高0.5元,月銷(xiāo)售量將相應(yīng)減少萬(wàn)只.則當(dāng)每只售價(jià)為多少時(shí),下月的月總利潤(rùn)最大?并求出下月最大總利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在多面體中,,,,,且平面平面.
(1)設(shè)點(diǎn)為線段的中點(diǎn),試證明平面;
(2)若直線與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和對(duì)待工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下所示:
積極參加班級(jí)工作 | 不太主動(dòng)參加班級(jí)工作 | 合計(jì) | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法有多大把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對(duì)班級(jí)工作的態(tài)度有關(guān)系?并說(shuō)明理由.
本題參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐的所有頂點(diǎn)都在球的球面上,平面,,,若球的表面積為,則三棱錐的側(cè)面積的最大值為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com