已知F是拋物線C:y2=8x的焦點,過F作傾斜角為60°的直線交拋物線于A、B兩點.設,且|FA|>|FB|,則λ=   
【答案】分析:依題意,可求得直線AB的方程,與拋物線C的方程y2=8x聯(lián)立,可求得A,B的坐標,由即可求得λ.
解答:解:∵拋物線C:y2=8x的焦點F(2,0),直線AB的傾斜角為60°,
∴直線AB的方程為y=(x-2),
得:3x2-20x+12=0,
解得:x1=,x2=6;
,且|FA|>|FB|,
∴xA=6,xB=,
由2-6=λ(-2)得:λ=3.
故答案為:3.
點評:本題考查拋物線的簡單性質,考查方程思想與向量的線性坐標運算,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知F為拋物線C:y=x2的焦點,A(x1,y1),B(x2,y2)是拋物線C上的兩點,且x1<x2
(1)若
FA
FB
(λ∈R),則λ
為何值時,直線AB與拋物線C所圍成的圖形的面積最。吭撁娣e的最小值是多少?
(2)若直線AB與拋物線C所圍成的面積為
4
3
,求線段AB的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•貴陽二模)已知F是拋物線C:y2=4x的焦點,直線l:y=k(x+1)與拋物線C交于A,B兩點,記直線FA,F(xiàn)B的斜率分別為k1,k2,則k1+k2=
0
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•貴陽二模)已知F是拋物線C:y2=4x的焦點,直線l:y=k(x+1)與拋物線C交于A,B兩點,記直線FA,F(xiàn)B的斜率分別為k1,k2,則k1+k2的值等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源:貴陽二模 題型:填空題

已知F是拋物線C:y2=4x的焦點,直線l:y=k(x+1)與拋物線C交于A,B兩點,記直線FA,F(xiàn)B的斜率分別為k1,k2,則k1+k2=______.

查看答案和解析>>

科目:高中數(shù)學 來源:貴陽二模 題型:單選題

已知F是拋物線C:y2=4x的焦點,直線l:y=k(x+1)與拋物線C交于A,B兩點,記直線FA,F(xiàn)B的斜率分別為k1,k2,則k1+k2的值等于( 。
A.-2B.-1C.0D.1

查看答案和解析>>

同步練習冊答案