已知F是拋物線C:y2=4x的焦點,直線l:y=k(x+1)與拋物線C交于A,B兩點,記直線FA,F(xiàn)B的斜率分別為k1,k2,則k1+k2=______.
由y2=4x,得拋物線焦點F(1,0),
聯(lián)立
y=k(x+1)
y2=4x
,得k2x2+(2k-4)x+k2=0.
設(shè)A(x1,y1),B(x2,y2),
x1+x2=
4-2k
k2
x1x2=1

k1+k2=
y1
x1-1
+
y2
x2-1
=
k(x1+1)(x2-1)+k(x2+1)(x1-1)
(x1-1)(x2-1)
=
2k(x1x2-1)
(x1-1)(x2-1)
=
2k(1-1)
(x1-1)(x2-1)
=0

故答案為0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F為拋物線C:y=x2的焦點,A(x1,y1),B(x2,y2)是拋物線C上的兩點,且x1<x2
(1)若
FA
FB
(λ∈R),則λ
為何值時,直線AB與拋物線C所圍成的圖形的面積最?該面積的最小值是多少?
(2)若直線AB與拋物線C所圍成的面積為
4
3
,求線段AB的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•貴陽二模)已知F是拋物線C:y2=4x的焦點,直線l:y=k(x+1)與拋物線C交于A,B兩點,記直線FA,F(xiàn)B的斜率分別為k1,k2,則k1+k2=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•貴陽二模)已知F是拋物線C:y2=4x的焦點,直線l:y=k(x+1)與拋物線C交于A,B兩點,記直線FA,F(xiàn)B的斜率分別為k1,k2,則k1+k2的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:貴陽二模 題型:單選題

已知F是拋物線C:y2=4x的焦點,直線l:y=k(x+1)與拋物線C交于A,B兩點,記直線FA,F(xiàn)B的斜率分別為k1,k2,則k1+k2的值等于( 。
A.-2B.-1C.0D.1

查看答案和解析>>

同步練習(xí)冊答案