已知圓,直線,
(1)證明:不論取什么實(shí)數(shù),直線與圓恒交于兩點(diǎn);
(2)求直線被圓截得的弦長(zhǎng)最小時(shí)的方程.

(1)見(jiàn)解析;(2)2x-y-5=0

解析試題分析:(1)直線與圓恒有交點(diǎn),說(shuō)明直線恒過(guò)的定點(diǎn)在圓內(nèi),所以關(guān)鍵是找到直線恒過(guò)的定點(diǎn),要把直線改寫(xiě)成的形式,然后令m的系數(shù)為零即可.(2)圓的弦長(zhǎng)最小值的計(jì)算,常用兩種方法:第一、通過(guò)弦長(zhǎng)的計(jì)算再求最小值;第二、通過(guò)計(jì)算最長(zhǎng)的弦心距來(lái)研究最短的弦.
試題解析:(1)證法1:的方程,
恒過(guò)定點(diǎn)
圓心坐標(biāo)為,半徑,
∴點(diǎn)在圓內(nèi),從而直線恒與圓相交于兩點(diǎn)。
證法2:圓心到直線的距離
,所以直線恒與圓相交于兩點(diǎn)。
(2)弦長(zhǎng)最小時(shí),,,

代入,
的方程為。
考點(diǎn):1.直線過(guò)定的求法.2.圓中最短弦的兩種常用計(jì)算方案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)求圓心在軸上,且與直線相切于點(diǎn)的圓的方程;
(2)已知圓過(guò)點(diǎn),且與圓關(guān)于直線對(duì)稱(chēng),求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為的圓位于軸的右側(cè),且與軸相切,
(Ⅰ)求圓的方程;
(Ⅱ)若橢圓的離心率為,且左右焦點(diǎn)為,試探究在圓上是否存在點(diǎn),使得為直角三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說(shuō)明理由(不必具體求出這些點(diǎn)的坐標(biāo))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)和圓

(Ⅰ)過(guò)點(diǎn)的直線被圓所截得的弦長(zhǎng)為,求直線的方程;
(Ⅱ)試探究是否存在這樣的點(diǎn)是圓內(nèi)部的整點(diǎn)(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱(chēng)為整點(diǎn)),且△OEM的面積?若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓A過(guò)點(diǎn),且與圓B:關(guān)于直線對(duì)稱(chēng).
(1)求圓A的方程;
(2)若HE、HF是圓A的兩條切線,E、F是切點(diǎn),求的最小值。
(3)過(guò)平面上一點(diǎn)向圓A和圓B各引一條切線,切點(diǎn)分別為C、D,設(shè),求證:平面上存在一定點(diǎn)M使得Q到M的距離為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知半徑為的⊙軸交于、兩點(diǎn),為⊙的切線,切點(diǎn)為,且在第一象限,圓心的坐標(biāo)為,二次函數(shù)的圖象經(jīng)過(guò)、兩點(diǎn).

(1)求二次函數(shù)的解析式;
(2)求切線的函數(shù)解析式;
(3)線段上是否存在一點(diǎn),使得以、為頂點(diǎn)的三角形與相似.若存在,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

有一個(gè)不透明的袋子,裝有4個(gè)完全相同的小球,球上分別編有數(shù)字1,2,3,4,
(1)若逐個(gè)不放回取球兩次,求第一次取到球的編號(hào)為偶數(shù)且兩個(gè)球的編號(hào)之和能被3整除的概率;
(2)若先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為a,將球放回袋中,然后再?gòu)拇须S機(jī)取一個(gè)球,該球的編號(hào)為b,求直線ax+by+1=0與圓有公共點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線L:與圓C:
(1) 若直線L與圓相切,求m的值。
(2) 若,求圓C 截直線L所得的弦長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:以點(diǎn)C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y = –2x+4與圓C交于點(diǎn)M, N,若|OM| = |ON|,求圓C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案