14.△ABC中,a、b、c分別為角A、B、C的對(duì)邊,$a=6,b=5\sqrt{2}$,$cosA=\frac{4}{5}$,則∠B=45o或135o

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求sinA的值,進(jìn)而利用正弦定理可得sinB的值,結(jié)合范圍B∈(0°,180°),可求B的值.

解答 解:∵$cosA=\frac{4}{5}$,可得:sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3}{5}$,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{5\sqrt{2}×\frac{3}{5}}{6}$=$\frac{\sqrt{2}}{2}$,
∵B∈(0°,180°),
∴B=45°或135o
故答案為:45o或135o

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,正弦定理,特殊角的三角函數(shù)值在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.深圳市居民用水收費(fèi)規(guī)定如下:每月用量在22方以下(含22方)為2元/方,大于22方且小于30方(含30方)為3元/方,30方以上為4元/方,排污費(fèi)均為0.5元/方.某居民某月繳水費(fèi)83元(含排污費(fèi)),則該居民這個(gè)月實(shí)際用水$30\frac{5}{9}$方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)a,b∈R,則“a>b”是“a>|b|”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x|x-a|+2x,其中a∈R.
(1)若函數(shù)f(x)在R上是增函數(shù),求a的取值范圍.
(2)若存在a∈[-2,4],使得關(guān)于x的方程f(x)=bf(a)有三個(gè)不相同的實(shí)數(shù)解,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下面的函數(shù)中,周期為π的奇函數(shù)是( 。
A.y=tan2xB.y=cos2xC.y=sin2xD.$y=sin\frac{x}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知水平放置的△A BC是按“斜二測(cè)畫法”得到如圖所示的直觀圖,其中 B'O'=C'O'=1,${A}'{O}'=\frac{{\sqrt{3}}}{2}$,那么對(duì)于原△ABC則有(  )
A.AB=BCB.AB=BC,且AB⊥BCC.AB⊥BCD.AB=AC,且AB⊥AC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將兩個(gè)數(shù)a=2014,b=2015交換使得a=2015,b=2014下列語(yǔ)句正確的一組是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知a>0,函數(shù)f(x)=$\frac{1}{3}{a^2}{x^3}-a{x^2}+\frac{2}{3}$,g(x)=-ax+1,x∈R,若在區(qū)間$(0,\frac{1}{2}]$上至少存在一個(gè)實(shí)數(shù)x0,使f(x0)>g(x0)成立,則a的取值范圍是(-3+$\sqrt{17}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.三棱錐S-ABC中,底面ABC為等腰直角三角形,BA=BC=2,側(cè)棱SA=SC=2$\sqrt{3}$,二面角S-AC-B的余弦值為$\frac{\sqrt{5}}{5}$,則此三棱錐外接球的表面積為(  )
A.16πB.12πC.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案