已知函數(shù)f(x)=
2x+1
x-a
,若任意?x∈N*,f(x)≥f(5)恒成立,則a的取值范圍是
 
考點(diǎn):函數(shù)恒成立問(wèn)題
專(zhuān)題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:將函數(shù)變形,由任意?x∈N*,f(x)≥f(5)恒成立,可得
2a+1<0
4<a<5
2a+1>0
5<a<6
或2a+1=0,由此可求a的取值范圍.
解答: 解:f(x)=
2x+1
x-a
=2+
2a+1
x-a

∵任意?x∈N*,f(x)≥f(5)恒成立,
2a+1<0
4<a<5
2a+1>0
5<a<6
或2a+1=0,
∴a=-
1
2
或5<a<6.
故答案為:a=-
1
2
或5<a<6.
點(diǎn)評(píng):本題主要考查不等式恒成立問(wèn)題,考查學(xué)生的計(jì)算能力,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對(duì)角線BD把△ABD折起,使A移到A1點(diǎn),且A1在平面BCD上的射影O恰好在CD上.
(1)求證:BC⊥A1D;
(2)求證:平面A1BC⊥平面A1BD;
(3)求二面角A1-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|x-1|-|x-2|-a
的定義域?yàn)镽,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下四個(gè)命題:①若
1
x
=
1
y
,則x=y.②若lgx有意義,則x>0.③若x=y,則
x
=
y
.④若x<y,則 x2<y2.則是真命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,邊長(zhǎng)為2的d正方形ABCD中,E,F(xiàn) 分別是AB,BC的中點(diǎn),將△ADE,△CDF,△BEF折起,使A,C,B二點(diǎn)重合于G,所得二棱錐G-DEF的俯視圖如圖2,則其正視圖的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正數(shù)a,b,對(duì)任意a>b且a,b∈(0,1)不等式ax2-ax-a2>bx2-bx-b2恒成立,則實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)體積為10的空間幾何體的三視圖,則圖中x的值為(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和.若a4<0,a5>|a4|,則使Sn>0成立的最小正整數(shù)n為( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AB∥CD,∠ABC=60°,AD=CD=CB=a,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=a.
(Ⅰ)求證:BC⊥平面ACFE;
(Ⅱ)求二面角B-EF-D的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案