已知全集U=R,集合A={y|y≥1},B=(-∞,-1)∪(2,+∞),則A∪(∁UB)=(  )
A、[1,2]
B、[1,+∞)
C、[-1,+∞)
D、(-∞,-1]∪[1,+∞)
考點:交、并、補集的混合運算
專題:集合
分析:根據(jù)集合的基本運算,即可得到結(jié)論.
解答: 解:∵B=(-∞,-1)∪(2,+∞),
∴∁UB={x|-1≤x≤2},
則A∪(∁UB)={x|x≥-1},
故選:C.
點評:本題主要考查集合的基本運算,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

雙曲線x2-4y2=4的離心率為( 。
A、
5
2
B、
3
2
C、4
3
D、
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足條件
y≥x
x+y≥0
y≤1
,則x-2y的最小值是( 。
A、-3B、-2C、-1D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i是虛數(shù)單位,且z(1+i)=(-
1
2
+
3
2
i)3,則在復平面內(nèi),z的共軛復數(shù)對應(yīng)的點在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x=
a2
a2+b2
被雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線所截得線段的長度恰好等于其一個焦點到漸近線的距離,則此雙曲線的離心率為( 。
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若α∈(-
π
2
π
2
),則“α=
π
3
”是“cosα=
1
2
”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某中學高三文科班學生共有800人參加了數(shù)學與地理的水平測試,學校決定利用隨機數(shù)表法從中抽取100人進行成績抽樣調(diào)查,先將800人按001,002,…,800進行編號;
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;(下面摘取了第7行到第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25  83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07  44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42  99 66 02 79 54
(2)抽取的100人的數(shù)學與地理的水平測試成績?nèi)缦卤恚撼煽兎譃閮?yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學成績,例如:表中數(shù)學成績?yōu)榱己玫墓灿?0+18+4=42.
①若在該樣本中,數(shù)學成績優(yōu)秀率是30%,求a,b的值:
人數(shù)數(shù)學
優(yōu)秀良好及格

地理
優(yōu)秀7205
良好9186
及格a4b
②在地理成績及格的學生中,已知a≥10,b≥8,求數(shù)學成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的奇數(shù)項是首項為1的等差數(shù)列,偶數(shù)項是首項為2的等比數(shù)列,且滿足a2+a3=a4,a11=a3+a4,記bn=a2n-1(n∈N*
(1)求數(shù)列{bn}的通項公式;
(2)設(shè)數(shù)列{
bn2+bn+1
bn2+bn
}的前2014項和為T2014,求不超過T2014的最大整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=2,an-an-1-2n=0,(n≥2,n∈N).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,求數(shù)列{bn}的通項公式.

查看答案和解析>>

同步練習冊答案