精英家教網 > 高中數學 > 題目詳情

【題目】已知數集)具有性質:對任意的、),兩數中至少有一個屬于.

1)分別判斷數集是否具有性質,并說明理由;

2)證明:,且;

3)證明:當時,、、、成等比數列.

【答案】1)數集具有性質P,理由見解析;(2)證明見解析;(3)證明見解析.

【解析】

1由定義直接判斷(2)由已知得anan中至少有一個屬于A,從而得到a11;再由1a1a2<…<an,得到akanAk2,3,…,n).由A具有性質P可知Ak1,2,3,…,n),由此能證明a11,且an3)當n5時,,從而a3a4A,A,由此能證明,故成等比數列.

1)由于3×4均不屬于數集{1,34},

所以數集{1,3,4}不具有性質P

由于1×2,1×3,1×6,2×3,,,,,都屬于數集{1,23,6},

所以數集{12,3,6}具有性質P

2)證明:

因為A{a1a2,…,an}具有性質P,

所以anan中至少有一個屬于A

由于1a1a2<…<an,所以ananan,故ananA,

從而1A,故a11;

因為1a1a2<…<an,所以akanan,故akanAk2,span>3,…,n).

A具有性質P可知Ak1,23,…,n),

又因為

所以a1,,…,,,

從而a1+a2++an1+an,

a11,且an

3證明:

由(2)知,當n5時,有a2,,即

因為1a1a2<…<a5,

所以a3a4a2a4a5,故a3a4A,

A具有性質P可知A,

,得A,且1a3,

所以a2,

,

所以,

、、、成等比數列.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,,.

(1) 求證:

(2) 求直線與平面所成角的正弦值;

(3) 線段上是否存在點,使平面若存在,求出;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設定義在D上的函數在點處的切線方程為,當時,若D內恒成立,則稱P點為函數類對稱中心點,則函數類對稱中心點的坐標是________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價為元,低于箱按原價銷售,不低于箱則有以下兩種優(yōu)惠方案:①以箱為基準,每多箱送箱;②通過雙方議價,買方能以優(yōu)惠成交的概率為,以優(yōu)惠成交的概率為.

甲、乙兩單位都要在該廠購買箱這種零件,兩單位都選擇方案②,且各自達成的成交價格相互獨立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;

某單位需要這種零件箱,以購買總價的數學期望為決策依據,試問該單位選擇哪種優(yōu)惠方案更劃算?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】同時具有性質: 最小正周期是;② 圖象關于直線對稱;③ 上是單調遞增函數的一個函數可以是(

A.B.

C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

(1)討論的單調性;

(2)若存在正數,使得當,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱中,側面為菱形,的中點為O,且平面

1)證明:;

2)若,,求到平面ABC的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)求函數的單調區(qū)間;

2)證明:對任意的,存在唯一的,使;

3)設(2)中所確定的關于的函數為,證明:當時,有.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,已知棱,,兩兩垂直,長度分別為1,2,2.若),且向量夾角的余弦值為.

(1)求的值;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案