△ABC中,a2tanB=b2tanA,則△ABC是__________(  )
A、等腰或直角三角形
B、等腰三角形
C、等腰直角三角形
D、直角三角形
考點(diǎn):三角形的形狀判斷
專(zhuān)題:解三角形
分析:利用正弦定理化簡(jiǎn),可得sin2A=sin2B,從而可得2A=2B或2A+2B=π,即可得出結(jié)論.
解答: 解:∵a2tanB=b2tanA,
∴sin2AtanB=sin2BtanA,
∴sinAcosA=sinBcosB,
∴sin2A=sin2B,
∴2A=2B或2A+2B=π,
∴A=B或A+B=
π
2
,
∴△ABC是等腰或直角三角形.
故選A.
點(diǎn)評(píng):本題考查正弦定理的運(yùn)用,考查三角形形狀的判斷,正確運(yùn)用正弦定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各式的值大于
3
2
的是( 。
A、cos
25π
3
+tan(-
15π
4
)
B、sin810°+tan765°-cos360°
C、sin(-1740°)cos1470°+cos(-660°)sin750°+tan405°
D、sin 2
17π
4
+tan 2
11π
6
tan
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求值:(1)
412
×
3
×
2
3
;
(2)(log62)2+log63×log612

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知M是△ABC內(nèi)的一點(diǎn),且
AB
AC
=2
3
,∠BAC=
π
6
,若△MBC,△MCA,△MAB的面積分別為
1
2
,x,y,則
1
x
+
4
y
的最小值為(  )
A、16B、18C、20D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

lim
n→∞
(2n+
an2-2n+1
bn+2
)=-1
,則點(diǎn)(a,b)的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)P(m,n)在圓x2+y2=2上,l是過(guò)點(diǎn)P的圓的切線(xiàn),切線(xiàn)l與函數(shù)y=x2+x+k(k∈R)的圖象交于AB兩點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),且△OAB是以AB為底的等腰三角形;
(1)試求出P縱坐標(biāo)n足的等量關(guān)系;
(2)若將(1)中的等量關(guān)系右邊化為零,左邊關(guān)于n代數(shù)式可表為(n+1)2(ax2+bx+c)的形式,且滿(mǎn)足條件的等腰三角形有有3個(gè),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,直線(xiàn)l經(jīng)過(guò)點(diǎn)P(3,0),傾斜角α=
π
4

(1)寫(xiě)出直線(xiàn)l的參數(shù)方程;
(2)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn)C:ρ=4cosθ與直線(xiàn)l相交于A、B兩點(diǎn),求AB中點(diǎn)坐標(biāo)及點(diǎn)P到A、B兩點(diǎn)距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1
1×3
+
1
2×4
+
1
3×5
+
1
4×6
+…+
1
n(n+2)
=( 。
A、
1
n(n+2)
B、
1
2
(1-
1
n+2
C、
1
2
3
2
-
1
n+1
-
1
n+2
D、
1
2
(1-
1
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在(1,+∞)上的函數(shù)f(x)滿(mǎn)足兩個(gè)條件:(1)對(duì)任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)當(dāng)x∈(1,2)時(shí),f(x)=2-x;記函數(shù)g(x)=f(x)-k(x-1),若函數(shù)g(x)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A、(1,2)
B、(1,
4
3
C、(
4
3
,2]
D、(
4
3
,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案