(本小題12分)過(guò)橢圓右焦點(diǎn)F2的直線交橢圓于A,B兩點(diǎn),F(xiàn)1為其左焦點(diǎn),已知△AF1B的周長(zhǎng)為8,橢圓的離心率為

(1)求橢圓C的方程;

(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓C恒有兩個(gè)交點(diǎn)P,Q,且?若存在,求出該圓的方程;若不存在,請(qǐng)說(shuō)明理由.

(1);(2)存在這樣的圓,

【解析】

試題分析:(1)設(shè)橢圓的方程,用待定系數(shù)法求出的值,根據(jù)題意列方程求解;(2)解決直線和橢圓的綜合問(wèn)題時(shí)注意:第一步:根據(jù)題意設(shè)直線方程,有的題設(shè)條件已知點(diǎn),而斜率未知;有的題設(shè)條件已知斜率,點(diǎn)不定,可由點(diǎn)斜式設(shè)直線方程.第二步:聯(lián)立方程:把所設(shè)直線方程與橢圓的方程聯(lián)立,消去一個(gè)元,得到一個(gè)一元二次方程.第三步:求解判別式:計(jì)算一元二次方程根.第四步:寫(xiě)出根與系數(shù)的關(guān)系.第五步:根據(jù)題設(shè)條件求解問(wèn)題中結(jié)論.

試題解析:(1)由已知得,解得(2分)

∴b2=a2-c2=1,故橢圓C的方程為. (4分)

(2)假設(shè)滿足條件的圓存在,其方程為x2+y2=r2(0<r<1).

當(dāng)直線PQ的斜率存在時(shí),設(shè)其方程為,

,消去y整理得(1+4k2)x2+8ktx+4t2-4=0.

設(shè)P(x1,y1),Q(x2,y2),則x1+x2=-,x1x2=.① (6分)

,∴x1x2+y1y2=0.又y1=kx1+t,y2=kx2+t,

∴x1x2+(kx1+t)(kx2+t)=0,即(1+k2)x1x2+kt(x1+x2)+t2=0.②

將①代入②得,

即t2=(1+k2). (8分)

∵直線PQ與圓x2+y2=r2相切,∴r=∈(0,1),

∴存在圓x2+y2=滿足條件. (10分)

當(dāng)直線PQ的斜率不存在時(shí),也適合

綜上所述,存在圓心在原點(diǎn)的圓滿足條件. (12分)

考點(diǎn):1、求橢圓的標(biāo)準(zhǔn)方程;2、直線與橢圓的綜合應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省鹽城市高三12月月考調(diào)研數(shù)學(xué)試卷(解析版) 題型:填空題

不等式的解集為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年湖南省瀏陽(yáng)、醴陵、攸縣三校高三聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

由直線,,曲線軸所圍成的封閉圖形的面積是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年河北省保定市高三上學(xué)期12月份聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知數(shù)列中滿足,則的最小值為( )

A. 7 B. C.9 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年河北省保定市高三上學(xué)期12月份聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知向量,,則夾角的余弦值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年河北省保定市高三上學(xué)期12月份聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知 ABC的三個(gè)頂點(diǎn)在以為球心的球面上,且 ,BC=1,AC=3,三棱錐的體積為 ,則球的表面積為_(kāi)_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年河北省保定市高三上學(xué)期12月份聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知數(shù)列中滿足,,則的最小值為( )

A.7 B. C.9 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年安徽省江淮名校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知正項(xiàng)等比數(shù)列{an}滿足a2015=2a2013+a2014,若存在兩項(xiàng)am、an使得

的最小值為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆豫晉冀高三第二次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

執(zhí)行如圖所示的程序框圖,輸出S的值為( )

A.3 B.-6 C.10 D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案