【題目】已知全集為實數(shù)集R,集合A={x|y= + },B={x|2x>4}
( I)分別求A∪B,A∩B,(UB)∪A
( II)已知集合C={x|1<x<a},若CA,求實數(shù)a的取值范圍.

【答案】解:( I)全集為實數(shù)集R,集合A={x|y= + },B={x|2x>4}
,
∴1≤x≤3,
故得集合A={x|1≤x≤3},
∵2x>4,
∴x>2
故得集合B={x|x>2},
UB═{x|x≤2},
∴A∪B={x|1≤x}
A∩B={x|3≥x>2}
UB)∪A═{x|x≤3},
(Ⅱ)集合C={x|1<x<a},
∵CA,
當c=時,滿足題意,此時a≤1.
當c≠時,要使CA成立,
則需 ,
即1<a≤3
故得實數(shù)a的取值范圍(1,3]
【解析】( I)化簡集合A,B,根據(jù)集合的基本運算即可求A∪B,A∩B,(UB)∪A( II)根據(jù)CA,建立條件關(guān)系即可求實數(shù)a的取值范圍.
【考點精析】掌握交、并、補集的混合運算是解答本題的根本,需要知道求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={0,1,2},B={z|z=x+y,x∈A,y∈A},則B=(
A.{0,1,2,3,4}
B.{0,1,2}
C.{0,2,4}
D.{1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊分別為a、b、c,已知向量m = (cosA,cosB),n = (b + 2c,a),且m⊥n.

(1)求角A的大。

(2)若a = 4,b + c = 8,求AC邊上的高h的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若隨機變量X的分布列為P(X=i)= (i=1,2,3,4),則P(X>2)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓中, 是橢圓的左、右焦點,過作直線交橢圓于兩點,若的周長為8,離心率為.

(1)求橢圓方程;

(2)若弦的斜率不為0,且它的中垂線與軸交于,求的縱坐標的范圍;

(3)是否在軸上存在點,使得軸平分?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
( I)判斷f(x)的奇偶性;
( II)求證:f(x)+f( )為定值;
(III)求 + + +f(1)+f(2015)+f(2016)+f(2017)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,曲線的極坐標方程是,以極點為原點,極軸為軸正半軸(兩坐標系取相同的單位長度)的直角坐標系中,曲線的參數(shù)方程為: 為參數(shù)).

(1)求曲線的直角坐標方程與曲線的普通方程;

(2)若用代換曲線的普通方程中的得到曲線的方程,若分別是曲線和曲線上的動點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】觀察下列不等式:
1+ ,1+
1+ + +

照此規(guī)律,第五個不等式為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣a)2lnx(a為常數(shù)).
(1)若f(x)在(1,f(1))處的切線與直線2x+2y﹣3=0垂直.
(。┣髮崝(shù)a的值;
(ⅱ)若a非正,比較f(x)與x(x﹣1)的大小;
(2)如果0<a<1,判斷f(x)在(a,1)上是否有極值,若有極值是極大值還是極小值?若無極值,請說明理由.

查看答案和解析>>

同步練習冊答案