【題目】2019年1月1日起我國實(shí)施了個人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)=收入-個稅起征點(diǎn)-專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括:①贍養(yǎng)老人費(fèi)用,②子女教育費(fèi)用,③繼續(xù)教育費(fèi)用,④大病醫(yī)療費(fèi)用等,其中前兩項(xiàng)的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費(fèi)用:每月扣除2000元,②子女教育費(fèi)用:每個子女每月扣除1000元,新的個稅政策的稅率表部分內(nèi)容如下:
級數(shù) | 一級 | 二級 | 三級 |
每月應(yīng)納稅所得額元(含稅) | |||
稅率 | 3 | 10 | 20 |
現(xiàn)有李某月收入為18000元,膝下有一名子女在讀高三,需贍養(yǎng)老人,除此之外無其它專項(xiàng)附加扣除,則他該月應(yīng)交納的個稅金額為( )
A.1800B.1000C.790D.560
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐PABCD的底面ABCD是矩形,PA⊥底面ABCD,點(diǎn)E、F分別是棱PC、PD的中點(diǎn),則
①棱AB與PD所在直線垂直;
②平面PBC與平面ABCD垂直;
③△PCD的面積大于△PAB的面積;
④直線AE與直線BF是異面直線.
以上結(jié)論正確的是________.(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)為頂點(diǎn)的三角形的周長為,一雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),且它的實(shí)軸長等于虛軸長,設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線和與橢圓的交點(diǎn)分別為和,其中在軸的同一側(cè).
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)是否存在題設(shè)中的點(diǎn),使得?若存在, 求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù).
(Ⅰ)當(dāng)時,求的解集;
(Ⅱ)當(dāng)時, 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,,設(shè).
(1)求;
(2)判斷數(shù)列是否為等比數(shù)列,并說明理由;
(3)求的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間.
(2)若方程上有解,求實(shí)數(shù)m的取值范圍.
(3)設(shè),已知區(qū)間[a,b](a,b∈R且a<b)滿足:y=g(x)在[a,b]上至少含有100個零點(diǎn),在所有滿足上述條件的[a,b]中求b﹣a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙二人用4張撲克牌分別是紅桃2,紅桃3,紅桃4,方片4玩游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.
寫出甲、乙二人抽到的牌的所有情況;
甲乙約定,若甲抽到的牌的牌面數(shù)字比乙大,則甲勝;否則乙勝,你認(rèn)為此約定是否公平?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)寫出下列兩組誘導(dǎo)公式:
①關(guān)于與的誘導(dǎo)公式;
②關(guān)于與的誘導(dǎo)公式.
(2)從上述①②兩組誘導(dǎo)公式中任選一組,用任意角的三角函數(shù)定義給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:和點(diǎn),動圓經(jīng)過點(diǎn)且與圓相切,圓心的軌跡為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)四邊形的頂點(diǎn)在曲線上,且對角線均過坐標(biāo)原點(diǎn),若 .
(i) 求的范圍;(ii) 求四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com