【題目】某校從參加環(huán)保知識(shí)競(jìng)賽的1200名學(xué)生中,隨機(jī)抽取60名,將其成績(jī)(均為整數(shù))分成六段,…,后畫出如圖的頻率分布直方圖.

(1)估計(jì)這次競(jìng)賽成績(jī)的眾數(shù)與中位數(shù)(結(jié)果保留小數(shù)點(diǎn)后一位);

(2)若這次競(jìng)賽成績(jī)不低于80分的同學(xué)都可以獲得一份禮物,試估計(jì)該校參加競(jìng)賽的1200名學(xué)生中可以獲得禮物的人數(shù).

【答案】(1)眾數(shù)75;中位數(shù)約為73.3;(2)360.

【解析】

(1)根據(jù)頻率分布直方圖中眾數(shù)與中位數(shù)的計(jì)算方法,即可求解.

(2)由頻率分布直方圖,求得不低于80分的頻率,即可求解1200名學(xué)生中可以獲得禮物的人數(shù),得到答案.

(1)由頻率分布直方圖可知,本次競(jìng)賽成績(jī)的眾數(shù)是.

因?yàn)榍叭齻(gè)小組的頻率之和為0.4,所以中位數(shù)落在第四個(gè)小組內(nèi),

設(shè)中位數(shù)為,則有,解得.

所以中位數(shù)約為73.3.

(2)由頻率分布直方圖,可得不低于80分的頻率

所以1200名學(xué)生中可以獲得禮物的人數(shù)約為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)若函數(shù)f(x)ax2bx3ab是偶函數(shù),定義域?yàn)?/span>[a1,2a],則a________,b________;

2)已知函數(shù)f(x)ax22x是奇函數(shù),則實(shí)數(shù)a________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有4種不同顏色要對(duì)如圖所示的四個(gè)部分進(jìn)行著色,要求有公共邊界的兩部分不能用同一種顏色,則不同的著色方法共有(  )

A. 144種 B. 72種 C. 64種 D. 84種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在①;這兩個(gè)條件中任選-一個(gè),補(bǔ)充在下面問題中,然后解答補(bǔ)充完整的題.

中,角的對(duì)邊分別為,已知 ,.

(1);

(2)如圖,為邊上一點(diǎn),,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,且過點(diǎn)(4,4),焦點(diǎn)為F

1)求拋物線的焦點(diǎn)坐標(biāo)和標(biāo)準(zhǔn)方程;

2P是拋物線上一動(dòng)點(diǎn),MPF的中點(diǎn),求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)奇函數(shù)上是增函數(shù),且,則不等式的解集為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且2,成等差數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)若,求數(shù)列的前項(xiàng)和;

(3)對(duì)于(2)中的,設(shè),求數(shù)列中的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,動(dòng)點(diǎn)滿足.設(shè)動(dòng)點(diǎn)的軌跡為.

(1)求動(dòng)點(diǎn)的軌跡方程,并說明軌跡是什么圖形;

(2)求動(dòng)點(diǎn)與定點(diǎn)連線的斜率的最小值;

(3)設(shè)直線交軌跡兩點(diǎn),是否存在以線段為直徑的圓經(jīng)過?若存在,求出實(shí)數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且),設(shè)),數(shù)列的前項(xiàng)和.

1)求、的值;

2)利用“歸納—猜想—證明”求出的通項(xiàng)公式;

3)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案