【題目】拋物線頂點在原點,焦點在x軸上,且過點(44),焦點為F

1)求拋物線的焦點坐標和標準方程;

2P是拋物線上一動點,MPF的中點,求M的軌跡方程.

【答案】1)拋物線標準方程為:y2=4x,焦點坐標為F1,0);(2M的軌跡方程為 y2=2x﹣1

【解析】

試題(1)由已知設(shè)拋物線解析式為,易得;(2)設(shè),的中點,由中點坐標公式得,代入法求的軌跡方程.

試題解析:(1)拋物線頂點在原點,焦點在x軸上,且過點(44),

設(shè)拋物線解析式為y2=2px,把(4,4)代入,得,16=2×4p∴p=2

拋物線標準方程為:y2=4x,焦點坐標為F10

2)設(shè)Mx,y),Px0,y0),F1,0),MPF的中點,則x0+1=2x0+y0="2y"

∴x0=2x﹣1,y0=2y

∵P是拋物線上一動點,∴y02=4x0

2y2=42x﹣1),化簡得,y2=2x﹣1

∴M的軌跡方程為 y2=2x﹣1

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列函數(shù)的奇偶性:

1f(x)|x2||x2|;

2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】各項均為正數(shù)的數(shù)列的前項和為,且滿足,.各項均為正數(shù)的等比數(shù)列滿足.

1)求數(shù)列、的通項公式;

2)若,數(shù)列的前項和.

①求;

②若對任意,,均有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

在如圖所示的多面體中,四邊形都為矩形。

)若,證明:直線平面;

)設(shè), 分別是線段的中點,在線段上是否存在一點,使直線平面?請證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(I) 當時,求函數(shù)的單調(diào)區(qū)間;

(II) 當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加環(huán)保知識競賽的1200名學生中,隨機抽取60名,將其成績(均為整數(shù))分成六段,,…,后畫出如圖的頻率分布直方圖.

(1)估計這次競賽成績的眾數(shù)與中位數(shù)(結(jié)果保留小數(shù)點后一位);

(2)若這次競賽成績不低于80分的同學都可以獲得一份禮物,試估計該校參加競賽的1200名學生中可以獲得禮物的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上一點到其焦點的距離為.

(1)求的值;

(2)若斜率為的直線與拋物線交于、兩點,點為拋物線上一點,其橫坐標為1,記直線的斜率為,直線的斜率為,試問:是否為定值?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

設(shè)是函數(shù)的圖象上任意兩點,且,已知點的橫坐標為

1)求證:點的縱坐標為定值;

2)若;

3)已知=,其中,為數(shù)列的前項和,若對一切都成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班同學利用國慶節(jié)進行社會實踐,對[25,55]歲的人群隨機抽取人進行了一次生活習慣是否符合低碳觀念的調(diào)查,若生活習慣符合低碳觀念的稱為低碳族,否則稱為非低碳族,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳族的人數(shù)

占本組的頻率

第一組

[2530)

120

0.6

第二組

[30,35)

195

第三組

[35,40)

100

0.5

第四組

[40,45)

0.4

第五組

[4550)

30

0.3

第六組

[50,55]

15

0.3

(1)補全頻率分布直方圖并求 的值;

(2)從年齡段在[4050)低碳族中采用分層抽樣法抽取6人參加戶外低碳體驗活動,其中選取2人作為領(lǐng)隊,求選取的2名領(lǐng)隊中恰有1人年齡在[4,45)歲的概率.

查看答案和解析>>

同步練習冊答案