【題目】現(xiàn)有4種不同顏色要對如圖所示的四個部分進行著色,要求有公共邊界的兩部分不能用同一種顏色,則不同的著色方法共有( )
A. 144種 B. 72種 C. 64種 D. 84種
【答案】D
【解析】
根據(jù)題意,分3步進行分析:①先給最上面“金”著色,有4種結(jié)果,②再給“榜”著色,有3種結(jié)果,③給“題”和“名”著色,分情況討論其著色方法數(shù)目,最后根據(jù)分步計數(shù)原理計算.
根據(jù)題意,分3步進行分析:①先給最上面“金”著色,有4種結(jié)果,②再給“榜”著色,有3種結(jié)果,③給“題”著色,若其與“榜”同色,則給“名”著色,有3種結(jié)果;若其與“榜”不同色,則給“榜”著色有2種結(jié)果,然后給“名”著色,有2種結(jié)果,
根據(jù)分步計數(shù)原理知共有4×3×(3+2×2)=84種結(jié)果,故選:D
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α,β∈(0, )且sin(α+2β)=
(1)若α+β= ,求sinβ的值;
(2)若sinβ= ,求cosα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,已知曲線C的參數(shù)方程為 (α為參數(shù)).以直角坐標(biāo)系原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ﹣ )=2
(Ⅰ)求直線l的直角坐標(biāo)方程;
(Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
袋中有形狀和大小完全相同的四種不同顏色的小球,每種顏色的小球各有4個,分別編號為1,2,3,4.現(xiàn)從袋中隨機取兩個球.
(Ⅰ)若兩個球顏色不同,求不同取法的種數(shù);
(Ⅱ)在(1)的條件下,記兩球編號的差的絕對值為隨機變量X,求隨機變量X的概率分布與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有4個不同的球,4個不同的盒子,把球全部放入盒子內(nèi).
(1)共有幾種放法?
(2)恰有1個空盒,有幾種放法?
(3)恰有2個盒子不放球,有幾種放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題中,真命題的序號有 .(寫出所有真命題的序號)
①若,則“”是“”成立的充分不必要條件;
②命題“使得”的否定是“均有”;
③命題“若,則或”的否命題是“若,則”;
④函數(shù)在區(qū)間上有且僅有一個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的單調(diào)函數(shù)f(x)滿足對任意的x1 , x2 , 都有f(x1+x2)=f(x1)+f(x2)成立.若正實數(shù)a,b滿足f(a)+f(2b﹣1)=0,則 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線的右焦點,且交橢圓于兩點,點在直線上的射影依次為點.
(Ⅰ)已知拋物線的焦點為橢圓的上頂點。
①求橢圓的方程;
②若直線交軸于點,且,當(dāng)變化時,求的值;
(Ⅱ)連接,試探索當(dāng)變化時,直線是否相交于一定點?若交于定點,請求出點的坐標(biāo)并給予證明;否則說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com