計(jì)算:(1)0.25×(
1
2
-4-4÷(
5
-1)0-(
1
16
 -
1
2
;
(2)lg25+lg2•lg50+(lg2)2
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì),有理數(shù)指數(shù)冪的化簡(jiǎn)求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用指數(shù)冪的運(yùn)算法則即可得出;
(2)利用對(duì)數(shù)的運(yùn)算法則、lg2+lg5=1即可得出.
解答: 解:(1)原式=
1
4
×24
-4-2-4×(-
1
2
)
=4-4-4=-4.
(2)原式=2lg5+lg2(lg5+1)+(lg2)2
=2lg5+lg2(lg5+lg2)+lg2
=2(lg5+lg2)
=2.
點(diǎn)評(píng):本題考查了指數(shù)冪的運(yùn)算法則、對(duì)數(shù)的運(yùn)算法則、lg2+lg5=1,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+cosα=-
1
5
,α∈(0,π),求sinα-cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2
x+1
x-1
+log2(x-1)+log2(p-x).
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直四棱ABCD-A1B1C1D1中(側(cè)棱與底面垂直的棱柱叫直棱柱),底面ABCD是邊長(zhǎng)為4的菱形,且∠DAB=60°,AA1=2
3
,P、Q分別是棱A1D1和AD的中點(diǎn),R為PB的中點(diǎn).
(Ⅰ)求證:QR⊥平面PBC;
(Ⅱ)求二面角R-QC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若cos(x+
π
4
)=
3
5
且0<x<π,求
sin2x+2sin2x
1+tanx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosx-
3
sin2
x.
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間[0,
π
4
]
上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐S-ABCD中,底面ABCD為正方形,SD⊥DA,E為SC的中點(diǎn),O為正方形ABCD的中心,AB=SD=6.
(1)求證:EO∥平面SAD
(2)求異面直線EO與BC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列五個(gè)說(shuō)法:
①一個(gè)命題的否命題為真,則它的逆命題一定為真
②?x0∈R,使得sinx0+cosx0=
2

③若函數(shù)f(x)在(-∞,0]及(0,+∞]上都是減函數(shù),則f(x)在(-∞,+∞)上是減函數(shù)
④垂直于同一直線的兩條直線相互平行
⑤“0<x<2”是“x≤2”的充分不必要條件
其中說(shuō)法正確的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={x|x2>2},B={x|
1
x-2
>2},則A∩B=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案