分析 由橢圓的方程求出頂點坐標,然后求出圓心坐標,進一步求出圓的半徑可得圓的方程.
解答 解:由$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1,可知橢圓的右頂點坐標(4,0),上下頂點坐標(0,±2),
∵圓經(jīng)過橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的三個頂點,且圓心在x軸上.
當圓經(jīng)過橢圓右頂點及短軸兩端點時,
設(shè)圓的圓心(a,0),則$\sqrt{{a}^{2}+4}=4-a$,解得a=$\frac{3}{2}$,
圓的半徑為:$\frac{5}{2}$,
所求圓的方程為:(x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$;
當圓經(jīng)過橢圓左頂點及短軸兩端點時,
討論可得圓的方程為:(x+$\frac{3}{2}$)2+y2=$\frac{25}{4}$.
故答案為:(x$±\frac{3}{2}$)2+y2=$\frac{25}{4}$.
點評 本題考查橢圓的簡單性質(zhì)的應(yīng)用,圓的方程的求法,考查計算能力,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,3) | B. | (-∞,-1) | C. | (-1,3) | D. | (-1,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x1•x2>e | B. | 1<x1•x2<e | C. | 0<x1x2<$\frac{1}{e}$ | D. | $\frac{1}{e}<{x_1}{x_2}$<1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-4,0)∪(0,4] | B. | (-4,4) | C. | [-4,4] | D. | (-∞,4)∪(4,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$,2 | B. | $\frac{\sqrt{2}}{2}$,$\sqrt{2}$ | C. | $\frac{1}{4}$,2 | D. | $\frac{1}{4}$,4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com