【題目】已知且,函數(shù).
(1)求的定義域及其零點;
(2)討論并用函數(shù)單調(diào)性定義證明函數(shù)在定義域上的單調(diào)性;
(3)設,當時,若對任意,存在,使得,求實數(shù)的取值范圍.
【答案】(1) 定義域為,函數(shù)的零點為-1;(2)見解析;(3) .
【解析】試題分析:(1)由題意知求得函數(shù) 定義域為,再由,即可求解函數(shù)的零點;
(2)根據(jù)函數(shù)的單調(diào)性的定義,即可證明函數(shù)的單調(diào)性;
(3)由任意,存在,使得成立,得到
由(2)知當時, 在上單調(diào)遞增,得到函數(shù)的最大值為,分三種情況討論,即可求解實數(shù)的取值范圍.
試題解析:
(1)由題意知, , ,解得,
所以函數(shù) 定義域為.
令,得,解得,故函數(shù)的零點為-1;
(2)設, 是內(nèi)的任意兩個不相等的實數(shù),且,則,
∵,∴,即
所以當時, ,故在上單調(diào)遞減,
當時, ,故在上單調(diào)遞增.
(3)若對于任意,存在,使得成立,
只需
由(2)知當時, 在上單調(diào)遞增,則
①當時, , 成立
②當時, 在上單調(diào)遞增, ,由,解得,∴
③當時, 在上單調(diào)遞減, ,由,解得,∴
綜上,滿足條件的的范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當,時,討論函數(shù)的單調(diào)性;
(2)對于任意,不等式恒成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列4個命題:
①“若a、G、b成等比數(shù)列,則G2=ab”的逆命題;
②“如果x2+x﹣6≥0,則x>2”的否命題;
③在△ABC中,“若A>B”則“sinA>sinB”的逆否命題;
④當0≤α≤π時,若8x2﹣(8sinα)x+cos2α≥0對x∈R恒成立,則α的取值范圍是0≤α≤.
其中真命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b,c為△ABC的三個內(nèi)角A,B,C的對邊,向量 =(﹣1, ), =(cosA,sinA).若 ⊥ ,且acosB+bcosA=csinC,則角A,B的大小分別為( )
A. ,
B. ,
C. ,
D. ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面,底面是直角梯形,,,,是上的點.
(Ⅰ)求證:平面平面;
(Ⅱ)若是的中點,且二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關于x的不等式mx2+2x+6m>0,在下列條件下分別求m的值或取值范圍:
(1)不等式的解集為{x|2<x<3};
(2)不等式的解集為R.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從向陽小區(qū)抽取100戶居民進行月用電量調(diào)查,為制定階梯電價提供數(shù)據(jù),發(fā)現(xiàn)其用電量都在50到350度之間,制作頻率分布直方圖的工作人員粗心大意,位置t處未標明數(shù)據(jù),你認為t=( )
A.0.0041
B.0.0042
C.0.0043
D.0.0044
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù)為增函數(shù),對任意都有(為常數(shù))
(1)判斷為何值時,為奇函數(shù),并證明;
(2)設,是上的增函數(shù),且,若不等式對任意恒成立,求實數(shù)的取值范圍.
(3)若,,為的前項和,求正整數(shù),使得對任意均有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com