用數(shù)學(xué)歸納法證明不等式:

證明:(1)當(dāng)時(shí),左邊=,時(shí)成立 

(2)假設(shè)當(dāng)時(shí)成立,即

那么當(dāng)時(shí),左邊

時(shí)也成立             

根據(jù)(1)(2)可得不等式對(duì)所有的都成立 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明不等式:
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
>1(n∈N*且n>1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(n)=1+
1
2
+
1
3
+…+
1
n
 (n∈N*),用數(shù)學(xué)歸納法證明不等式f(2n)>
n
2
時(shí),f(2k+1)比f(wàn)(2k)多的項(xiàng)數(shù)是
2k
2k

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明不等式
1
n+1
+
1
n+2
+…+
1
n+n
13
24
的過(guò)程中,由“k推導(dǎo)k+1”時(shí),不等式的左邊增加了(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明不等式1+
1
2
+
1
4
+…+
1
2n-1
127
64
(n∈N*)成立,其初始值至少應(yīng)取
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明不等式2n>n2時(shí),第一步需要驗(yàn)證n0=( 。⿻r(shí),不等式成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案