【題目】如圖是一位發(fā)燒病人的體溫記錄折線圖,下列說法不正確的是(

A.病人在51312時的體溫是

B.病人體溫在5140時到6時下降最快

C.從體溫上看,這個病人的病情在逐漸好轉(zhuǎn)

D.病人體溫在51518時開始逐漸穩(wěn)定

【答案】D

【解析】

根據(jù)折線統(tǒng)計圖中的信息,對四個選項逐一分析即可得解.

對于A:由圖可知,病人在51312時的體溫是,故A正確;

對于B:從圖中可以看出,5136時到12時折線下降比其它時間段陡直,所以病人體溫在5136時到12時下降最快,故B正確;

對于C:從圖中看,曲線整體呈現(xiàn)下降的趨勢,則這個病人的病情是好轉(zhuǎn)了,故C正確;

對于D:由圖可知,病人體溫從51418時到51518時比較穩(wěn)定,在上下浮動,故D不正確.

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】著名物理學家李政道說:科學和藝術是不可分割的”.音樂中使用的樂音在高度上不是任意定的,它們是按照嚴格的數(shù)學方法確定的.我國明代的數(shù)學家、音樂理論家朱載填創(chuàng)立了十二平均律是第一個利用數(shù)學使音律公式化的人.十二平均律的生律法是精確規(guī)定八度的比例,把八度分成13個半音,使相鄰兩個半音之間的頻率比是常數(shù),如下表所示,其中表示這些半音的頻率,它們滿足.若某一半音與的頻率之比為,則該半音為(

頻率

半音

C

D

E

F

G

A

B

C(八度)

A.B.GC.D.A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以原點O為極點,以x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為,直線的參數(shù)方程為t為參數(shù)),,點A為直線與曲線C在第二象限的交點,過O點的直線與直線互相垂直,點B為直線與曲線C在第三象限的交點.

1)寫出曲線C的直角坐標方程及直線的普通方程;

2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了提高生產(chǎn)線的運行效率,工廠對生產(chǎn)線的設備進行了技術改造.為了對比技術改造后的效果,采集了生產(chǎn)線的技術改造前后各20次連續(xù)正常運行的時間長度(單位:天)數(shù)據(jù),并繪制了如莖葉圖:

1)(i)設所采集的40個連續(xù)正常運行時間的中位數(shù)m,并將連續(xù)正常運行時間超過m和不超過m的次數(shù)填入下面的列聯(lián)表:

超過

不超過

改造前

改造后

ii)根據(jù)(i)中的列聯(lián)表,能否有99%的把握認為生產(chǎn)線技術改造前后的連續(xù)正常運行時間有差異?

附:

0.050

0.010

0.001

3.841

6.635

10.828

2)工廠的生產(chǎn)線的運行需要進行維護,工廠對生產(chǎn)線的生產(chǎn)維護費用包括正常維護費、保障維護費兩種.對生產(chǎn)線設定維護周期為T天(即從開工運行到第kT進行維護.生產(chǎn)線在一個生產(chǎn)周期內(nèi)設置幾個維護周期,每個維護周期相互獨立.在一個維護周期內(nèi),若生產(chǎn)線能連續(xù)運行,則不會產(chǎn)生保障維護費;若生產(chǎn)線不能連續(xù)運行,則產(chǎn)生保障維護費.經(jīng)測算,正常維護費為0.5萬元/次;保障維護費第一次為0.2萬元/周期,此后每增加一次則保障維護費增加0.2萬元.現(xiàn)制定生產(chǎn)線一個生產(chǎn)周期(以120天計)內(nèi)的維護方案:.以生產(chǎn)線在技術改造后一個維護周期內(nèi)能連續(xù)正常運行的頻率作為概率,求一個生產(chǎn)周期內(nèi)生產(chǎn)維護費的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)且在上的最大值為,

1)求函數(shù)f(x)的解析式;

(2)判斷函數(shù)f(x)在(0,π)內(nèi)的零點個數(shù),并加以證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019新型冠狀病毒感染的肺炎的傳播有飛沫、氣溶膠、接觸等途徑,為了有效抗擊疫情,隔離性防護是一項具體有效措施.某市為有效防護疫情,宣傳居民盡可能不外出,鼓勵居民的生活必需品可在網(wǎng)上下單,商品由快遞業(yè)務公司統(tǒng)一配送(配送費由政府補貼).快遞業(yè)務主要由甲公司與乙公司兩家快遞公司承接:“快遞員”的工資是“底薪+送件提成”.這兩家公司對“快遞員”的日工資方案為:甲公司規(guī)定快遞員每天底薪為70元,每送件一次提成1元;乙公司規(guī)定快遞員每天底薪為120元,每日前83件沒有提成,超過83件部分每件提成5元,假設同一公司的快遞員每天送件數(shù)相同,現(xiàn)從這兩家公司往年忙季各隨機抽取一名快遞員并調(diào)取其100天的送件數(shù),得到如下條形圖:

1)求乙公司的快遞員一日工資y(單位:元)與送件數(shù)n的函數(shù)關系;

2)若將頻率視為概率,回答下列問題:

①記甲公司的“快遞員”日工資為X(單位:元).求X的分布列和數(shù)學期望;

②小王想到這兩家公司中的一家應聘“快遞員”的工作,如果僅從日收入的角度考慮,請你利用所學過的統(tǒng)計學知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】金剛石是碳原子的一種結(jié)構(gòu)晶體,屬于面心立方晶胞(晶胞是構(gòu)成晶體的最基本的幾何單元),即碳原子處在立方體的個頂點,個面的中心,此外在立方體的對角線的處也有個碳原子,如圖所示(綠色球),碳原子都以共價鍵結(jié)合,原子排列的基本規(guī)律是每一個碳原子的周圍都有個按照正四面體分布的碳原子.設金剛石晶胞的棱長為,則正四面體的棱長為__________;正四面體的外接球的體積是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】英國統(tǒng)計學家EH.辛普森1951年提出了著名的辛普森悖論,下面這個案例可以讓我們感受到這個悖論.有甲乙兩名法官,他們都在民事庭和行政庭主持審理案件,他們審理的部分案件被提出上訴.記錄這些被上述案件的終審結(jié)果如下表所示(單位:件):

法官甲

法官乙

終審結(jié)果

民事庭

行政庭

合計

終審結(jié)果

民事庭

行政庭

合計

維持

29

100

129

維持

90

20

110

推翻

3

18

21

推翻

10

5

15

合計

32

118

150

合計

100

25

125

記甲法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,,記乙法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,,則下面說法正確的是

A. ,,B. ,,

C. ,,D. ,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線的極坐標方程是.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)設點.若直與曲線相交于兩點,求的值.

查看答案和解析>>

同步練習冊答案