【題目】已知a,b,c分別是銳角△ABC的三個內(nèi)角A,B,C的對邊,且 =
(1)求A的大;
(2)當(dāng) 時,求b+c的取值范圍.

【答案】
(1)解:由正弦定理,得

即2sinBcosA﹣sinCcosA=cosCsinA,

即2sinBcosA=sinCcosA+cosCsinA=sin(A+C)=sin(π﹣B)=sinB,

∵sinB≠0,

,

∵A∈(0,π),


(2)解:由(1)知 ,由正弦定理得:

∴b=2sinB,c=2sinC,

,

<B< ,

+B<

<sin(B+ )≤1,


【解析】(1)由正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡已知等式可得2sinBcosA=sinB,結(jié)合sinB≠0,可求 ,由特殊角的三角函數(shù)值即可得解A的值.(2)由正弦定理得b=2sinB,c=2sinC,利用三角函數(shù)恒等變換的應(yīng)用化簡可得b+c=2 sin(B+ ),由 ,可求B的范圍,進(jìn)而可求 +B的范圍,利用正弦函數(shù)的圖象和性質(zhì)即可得解其取值范圍.
【考點精析】認(rèn)真審題,首先需要了解正弦定理的定義(正弦定理:).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù) 的圖象,只需將函數(shù) 的圖象上所有的點的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),再向平行移動個單位長度得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos2(x﹣ )﹣sin2x. (Ⅰ)求 的值;
(Ⅱ)求函數(shù)f(x)在 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=6cos2 + sinωx﹣3(ω>0)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點,B,C為圖象與x軸的交點,且△ABC為正三角形.
(1)求ω的值及函數(shù)f(x)的值域;
(2)若f(x0)= ,且x0∈(﹣ , ),求f(x0+1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我國古代著名的數(shù)學(xué)專著《九章算術(shù)》里有﹣段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里:駑馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎駑馬,二馬相逢,問:需日相逢.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,其前n項和是Sn , 若S15>0,S16<0,則在 ,…, 中最大的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sinx的圖象上所有的點向右平行移動個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是( 。
A.y=sin(2x﹣
B.y=sin(2x﹣
C.y=sin(x﹣
D.y=sin(x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解初三女生身高情況,某中學(xué)對初三女生身高情況進(jìn)行了一次測量,所得數(shù)據(jù)整理后列出了頻率分布表如下:

組別

頻數(shù)

頻率

145.5~149.5

1

0.02

149.5~153.5

4

0.08

153.5~157.5

20

0.40

157.5~161.5

15

0.30

161.5~165.5

8

0.16

165.5~169.5

m

n

合計

M

N


(1)求出表中m,n,M,N所表示的數(shù)分別是多少?
(2)畫出頻率分布直方圖;
(3)全體女生中身高在哪組范圍內(nèi)的人數(shù)最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x . (Ⅰ)若f(x)=2,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案