【題目】已知橢圓的離心率為,短軸長(zhǎng)為.

(1)求橢圓的方程;

(2)設(shè)過(guò)點(diǎn)的直線(xiàn)與橢圓交于、兩點(diǎn),是橢圓的上焦點(diǎn).問(wèn):是否存在直線(xiàn)使得?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)

(2)存在直線(xiàn)合題意.

【解析】

(1)由短軸長(zhǎng)為求出b,再由離心率為解得:,,從而得解。

(2)可得:為線(xiàn)段的中點(diǎn),設(shè)直線(xiàn)方程:,聯(lián)立直線(xiàn)方程與橢圓方程,表示出,,再利用中點(diǎn)坐標(biāo)公式列方程即可求解。

:(1)∵,,且有,

解得,

∴橢圓的方程為.

(2)由題可知的斜率一定存在,設(shè)設(shè),

聯(lián)立

,∴為線(xiàn)段的中點(diǎn),

……④

將④代入②解得 ……⑤

將④代入③得 ……

將⑤代入⑥解得 ……

將⑦式代入①式檢驗(yàn)成立,

,即存在直線(xiàn)合題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)的焦點(diǎn)為,過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于,兩點(diǎn).

(1)為坐標(biāo)原點(diǎn),求證:;

(2)設(shè)點(diǎn)在線(xiàn)段上運(yùn)動(dòng),原點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn)為,求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某貧困地區(qū)共有1500戶(hù)居民,其中平原地區(qū)1050戶(hù),山區(qū)450戶(hù).為調(diào)查該地區(qū)2017年家庭收入情況,從而更好地實(shí)施“精準(zhǔn)扶貧”,采用分層抽樣的方法,收集了150戶(hù)家庭2017年年收入的樣本數(shù)據(jù)(單位:萬(wàn)元).

1)應(yīng)收集多少戶(hù)山區(qū)家庭的樣本數(shù)據(jù)?

2)根據(jù)這150個(gè)樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為(0,0.5],(0.5,1],(1,1.5],(1.52],(2,2.5],(2.53].如果將頻率視為概率,估計(jì)該地區(qū)2017年家庭收入超過(guò)1.5萬(wàn)元的概率;

3)樣本數(shù)據(jù)中,有5戶(hù)山區(qū)家庭的年收入超過(guò)2萬(wàn)元,請(qǐng)完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”?

超過(guò)2萬(wàn)元

不超過(guò)2萬(wàn)元

總計(jì)

平原地區(qū)

山區(qū)

5

總計(jì)

附:

PK2k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)的10件產(chǎn)品中,有8件合格品、2件不合格品,合格品與不合格品在外觀上沒(méi)有區(qū)別.從這10件產(chǎn)品中任意抽檢2件,計(jì)算:

1)抽出的2件產(chǎn)品恰好都是合格品的抽法有多少種?

2)抽出的2件產(chǎn)品至多有1件不合格品的抽法有多少種?

3)如果抽檢的2件產(chǎn)品都是不合格品,那么這批產(chǎn)品將被退貨,求這批產(chǎn)品被退貨的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論的極值點(diǎn)的個(gè)數(shù);

(2)若有兩個(gè)極值點(diǎn)x1,x2(x1<x2),且的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)在R上為偶函數(shù)且在單調(diào)遞減,若時(shí),不等式恒成立,則實(shí)數(shù)m的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,試確定實(shí)數(shù)的取值范圍;

(3)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中,若僅存在兩個(gè)正整數(shù)使得,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5cm,該紙片上的正六邊形ABCDEF的中心為O,G、HM、NP、Q為圓O上的點(diǎn),△GAB,△HBC,△MCD,△NDE,△PEF,△QAF分別是以AB,BC,CD,DE,EF,FA為底邊的等腰三角形,沿虛線(xiàn)剪開(kāi)后,分別以AB,BCCD,DE,EFFA為折痕折起△GAB,△HBC,△MCD,△NDE,△PEF,△QAF,使得G、H、M、N、P、Q重合,得到六棱錐.當(dāng)正六邊形ABCDEF的邊長(zhǎng)變化時(shí),所得六棱錐體積(單位:cm3)的最大值為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案