函數(shù)f(x)=
ex
x
在點(diǎn)P(2,f(2))處切線方程是( 。
A、y=
e2
4
x
B、y=e2x-
3
2
e2
C、y=
e2
2
x
D、y=3e2x-
11
2
e2
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出原函數(shù)的導(dǎo)函數(shù),得到f′(2),再求出f(2),然后利用直線方程的點(diǎn)斜式得答案.
解答: 解:∵f(x)=
ex
x
,
f(x)=
xex-ex
x2

f(2)=
e2
4

又f(2)=
e2
2

∴函數(shù)f(x)=
ex
x
在點(diǎn)P(2,f(2))處切線方程是y-
e2
2
=
e2
4
(x-2)
,
y=
e2
4
x

故選:A.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究過(guò)曲線上某點(diǎn)處的切線方程,過(guò)曲線上某點(diǎn)處的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(ωx+
π
3
)的圖象向右平移
π
3
個(gè)單位后圖象關(guān)于y軸對(duì)稱,則ω的最小正值是( 。
A、
1
2
B、1
C、2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)與雙曲線C2
y2
16
-
x2
4
=1有相同的漸近線,則C1的離心率=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+4x,(x≤-2)
x
2
,(x>-2)

(1)在下列直角坐標(biāo)系中畫(huà)出f(x)的圖象;
(2)求f(f(-5));
(3)若f(x)=5,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中正確的是
 
(寫(xiě)出正確命題的序號(hào))
(1)?x0∈[a,b],使f(x0)>g(x0),只需f(x)max>g(x)min
(2)?x∈[a,b],f(x)>g(x)恒成立,只需[f(x)-g(x)]min>0;
(3)?x1∈[a,b],x2∈[c,d],f(x1)>g(x2)成立,只需f(x)min>g(x)max;
(4)?x1∈[a,b],x2∈[c,d],f(x1)>g(x2),只需f(x)min>g(x)min

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的導(dǎo)數(shù)為f′(x),且滿足關(guān)系式f(x)=2x3+x2f'(1)+lnx,則f′(2)的值等于( 。
A、-
7
2
B、
7
2
C、-7
D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)是R上的偶函數(shù),且在(-∞,0]上是增函數(shù),若f(a)≤f(2),則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,2]
B、[-2,+∞)
C、[-2,2]
D、(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(1,4)作一直線,使其在兩坐標(biāo)軸上的截距為正,當(dāng)其和最小時(shí),這條直線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了了解全校200名學(xué)生視力的情況.從中抽取50名學(xué)生進(jìn)行測(cè)量.下列說(shuō)法正確的是( 。
A、總體是200
B、個(gè)體是每名學(xué)生
C、樣本為50名學(xué)生
D、樣本容量為50

查看答案和解析>>

同步練習(xí)冊(cè)答案