點P(x,y)是圓x2+(y-1)2=1上任意一點,若點P的坐標(biāo)滿足不等式x+y+m≥0,則實數(shù)m的取值范圍是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:此題考的查的是函數(shù)的最值問題.在解答時,應(yīng)先將問題轉(zhuǎn)化為當(dāng)滿足點P(x,y)是圓x2+(y-1)2=1上時,求Z=x+y的最小值;然后由-m小于等于最小值恒成立,解不等式即可獲得問題的解答.
解答:解:由點P的坐標(biāo)滿足不等式x+y+m≥0,
即知當(dāng)滿足點P(x,y)是圓x2+(y-1)2=1上時-m≤x+y恒成立.
∴只需要求當(dāng)滿足點P(x,y)是圓x2+(y-1)2=1上時,Z=x+y的最小值即可.
如圖可知:Z的最小值為,


故選B.
點評:此題考的查的是函數(shù)的最值問題.在解答的過程當(dāng)中充分體現(xiàn)了圓的知識、線性規(guī)劃的知識以及數(shù)形結(jié)合的思想和問題轉(zhuǎn)化的思想.值得同學(xué)們體會反思.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點P(x,y)是圓x2+(y-1)2=1上任意一點,若點P的坐標(biāo)滿足不等式x+y+m≥0,則實數(shù)m的取值范圍是(  )
A、(-∞, -
2
]
B、[
2
-1, +∞)
C、(
2
, +∞)
D、[1-
2
, +∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x,y)是圓x2+y2=2y上的動點,
(1)求2x+y的取值范圍;
(2)若x+y+a≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)動點P(x,y)(y≥0)到定點F(0,1)的距離比它到x軸的距離大1,記點P的軌跡為曲線C.
(Ⅰ)求點P的軌跡方程;
(Ⅱ)設(shè)圓M過A(0,2),且圓心M在曲線C上,EG是圓M在x軸上截得的弦,試探究當(dāng)M運動時,弦長|EG|是否為定值?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P(x,y)是圓x2+(y-1)2=1上任意一點,若點P的坐標(biāo)滿足不等式x+y+m≥0,則實數(shù)m的取值范圍
[
2
-1
,+∞)
[
2
-1
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x,y)是圓(x+2)2+y2=1上任意一點.

(1)求P點到直線3x+4y+12=0的距離的最大值和最小值;

(2)求x-2y的最大值和最小值;

(3)求的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案