精英家教網 > 高中數學 > 題目詳情
點P(x,y)是圓x2+(y-1)2=1上任意一點,若點P的坐標滿足不等式x+y+m≥0,則實數m的取值范圍
[
2
-1
,+∞)
[
2
-1
,+∞)
分析:先將問題轉化為當滿足點P(x,y)是圓x2+(y-1)2=1上時,求Z=x+y的最小值;然后由-m小于等于最小值恒成立,解不等式即可獲得問題的解答.
解答:解:由點P的坐標滿足不等式x+y+m≥0,
即知當滿足點P(x,y)是圓x2+(y-1)2=1上時-m≤x+y恒成立.
∴只需要求當滿足點P(x,y)是圓x2+(y-1)2=1上時,Z=x+y的最小值即可.
如圖可知:Z的最小值為1-2
2

∴-m≤1-
2
,
∴m≥
2
-1.
故答案為:[
2
-1,+∞)
點評:此題考的查的是函數的最值問題.在解答的過程當中充分體現了圓的知識、線性規(guī)劃的知識以及數形結合的思想和問題轉化的思想.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

點P(x,y)是圓x2+(y-1)2=1上任意一點,若點P的坐標滿足不等式x+y+m≥0,則實數m的取值范圍是( 。
A、(-∞, -
2
]
B、[
2
-1, +∞)
C、(
2
, +∞)
D、[1-
2
, +∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點P(x,y)是圓x2+y2=2y上的動點,
(1)求2x+y的取值范圍;
(2)若x+y+a≥0恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網設動點P(x,y)(y≥0)到定點F(0,1)的距離比它到x軸的距離大1,記點P的軌跡為曲線C.
(Ⅰ)求點P的軌跡方程;
(Ⅱ)設圓M過A(0,2),且圓心M在曲線C上,EG是圓M在x軸上截得的弦,試探究當M運動時,弦長|EG|是否為定值?為什么?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點P(x,y)是圓(x+2)2+y2=1上任意一點.

(1)求P點到直線3x+4y+12=0的距離的最大值和最小值;

(2)求x-2y的最大值和最小值;

(3)求的最大值和最小值.

查看答案和解析>>

同步練習冊答案