已知向量
a
,
b
滿足|
a
|=1,
a
b
,則
a
-2
b
a
方向上的投影為( 。
A、1
B、
7
7
C、-1
D、
2
7
7
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:根據(jù)向量的數(shù)量積的定義得到向量
a
-2
b
a
方向上的投影等于數(shù)量積除以
a
的模得到.
解答: 解:∵|
a
|=1,
a
b
,∴
a
b
=0,
所以
a
-2
b
a
方向上的投影等于
(
a
-2
b
)•
a
|
a
|
=
a
2
-2
b
a
|
a
|
=1;
故選A.
點評:本題考查平面向量數(shù)量積的含義以及考查向量模的求解投影等概念,屬基礎(chǔ)題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)向量
a
=(
3
,1),
b
=(2,-2),若(λ
a
+
b
)⊥(λ
a
-
b
),則實數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}是等差數(shù)列,a1=f(a+1),a2=3,a3=f(a-1),其中a為實數(shù),f(x)=x2-4x+5.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{an}單調(diào)遞增,設(shè)bn=2nan,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sin6°•cos24°•sin78°•cos48°的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cos(α-
β
2
)=
1
9
,sin(
α
2
)=
2
3
,且
π
4
<α<
π
2
,-
π
4
<β<
π
4
,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

3
-3
(|2x+3|+|3-2x|)dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是一個單調(diào)遞增的等差數(shù)列,且滿足a2a4=21,a1+a5=10,數(shù)列{bn}的前n項和為2Sn=3(bn-1)(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)證明數(shù)列{bn}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3-3x-a有3個不同零點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
1
log2100
+
1
log5100
=
 

查看答案和解析>>

同步練習冊答案