【題目】拋物線,為直線上的動點(diǎn),過點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,.

1)證明:直線過定點(diǎn);

2)若以為圓心的圓與直線相切,且切點(diǎn)為線段的中點(diǎn),求該圓的面積.

【答案】1)證明見解析;(2

【解析】

1)設(shè)點(diǎn),,利用導(dǎo)數(shù)求出切線的斜率,再利用斜率公式求出切線的斜率,進(jìn)而求出直線的方程,從而可證明直線過定點(diǎn);

2)將直線的方程與拋物線的方程聯(lián)立,利用韋達(dá)定理,求出點(diǎn)坐標(biāo),借助向量垂直的坐標(biāo)運(yùn)算,求得,進(jìn)而求得圓的面積.

1)設(shè),則,

,

所以,所以切線的斜率為

,整理得,

設(shè),同理可得,

所以直線的方程為,

所以直線恒過定點(diǎn).

2)由(1)得直線的方程為,

,得,

,,

設(shè)為線段的中點(diǎn),則,

由于,而,

與向量平行,所以,

解得,

當(dāng)時(shí),圓半徑,所以圓的面積為,

當(dāng)時(shí),圓半徑,所以圓的面積為.

所以,該圓的面積為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy上取兩個(gè)定點(diǎn)A10),A2,0),再取兩個(gè)動點(diǎn)N10,m),N20,n),且mn2.

1)求直線A1N1A2N2交點(diǎn)M的軌跡C的方程;

2)過R3,0)的直線與軌跡C交于PQ,過PPNx軸且與軌跡C交于另一點(diǎn)N,F為軌跡C的右焦點(diǎn),若λ1),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,底面為正方形,且底面,的平面與側(cè)面的交線為,且滿足表示的面積.

1)證明: 平面;

(2)當(dāng)時(shí),求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中kR.

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)k∈[1,2]時(shí),求函數(shù)在[0,k]上的最大值的表達(dá)式,并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,為正方形,且平面平面,點(diǎn)為棱的中點(diǎn).

1)在棱上是否存在一點(diǎn),使得平面?并說明理由;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,點(diǎn)的極坐標(biāo)是,曲線的極坐標(biāo)方程為.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,斜率為的直線經(jīng)過點(diǎn).

1)若時(shí),寫出直線和曲線的直角坐標(biāo)方程;

2)若直線和曲線相交于不同的兩點(diǎn),求線段的中點(diǎn)的在直角坐標(biāo)系中的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為2的正方體中,分別是棱的中點(diǎn),是底面內(nèi)一動點(diǎn),若直線與平面不存在公共點(diǎn),以下說法正確的個(gè)數(shù)是(

①三棱錐的體積為定值;

的面積的最小值為

平面;

④經(jīng)過三點(diǎn)的截面把正方體分成體積相等的兩部分.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,,給出以下四個(gè)命題:①為偶函數(shù);②為偶函數(shù);③的最小值為0;④有兩個(gè)零點(diǎn).其中真命題的是( ).

A.②④B.①③C.①③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.其中,表示直線,、β表示平面,給出如下5個(gè)命題:

①若//,則//;

②若,則

不垂直,則不可能成立;

④若,則;

,則;

其中真命題的個(gè)數(shù)是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案